85 research outputs found
Measuring the vertical profile of leaf wetness in a forest canopy
Plant canopies are wet for substantial amounts of time and this influences physiological performance and fluxes of energy, carbon and water at the ecosystem level. Leaf wetness sensors enable us to quantify the duration of leaf wetness and spatially map this to canopy structure. However, manually analysing leaf wetness data from plot-level experiments can be time-consuming, and requires a degree of subjective judgement in delineating wetness events which can lead to inconsistencies in the analysis. Here we: • Describe how to set up an array of leaf wetness sensors (Phytos 31, Meter) enabling the measurement of leaf wetness duration through the profile of a forest canopy, • Present a method and R script to objectively identify and distinguish periods of rain and dew from the output of leaf wetness sensors, Provide a criteria for separating the leaf wetness sensor output into dew and rain events which may form a reference standard, or be modified for use, in future studies.UK NERC grants NE/J011002/1 and NE/N006852/1 to PM; CNPQ grant 457914/2013-0/MCTI/CNPq/FNDCT/LBA/ESECAFLOR to ACLD; EU FP7-Amazalert grant to PM
Differences in xylem and leaf hydraulic traits explain differences in drought tolerance among mature Amazon rainforest trees
Considerable uncertainty surrounds the impacts of anthropogenic climate change on the composition and structure of Amazon forests. Building upon results from two large-scale ecosystem drought experiments in the eastern Brazilian Amazon that observed increases in mortality rates among some tree species but not others, in this study we investigate the physiological traits underpinning these differential demographic responses. Xylem pressure at 50% conductivity (xylem-P50 ), leaf turgor loss point (TLP), cellular osmotic potential (πo ), and cellular bulk modulus of elasticity (ε), all traits mechanistically linked to drought tolerance, were measured on upper canopy branches and leaves of mature trees from selected species growing at the two drought experiment sites. Each species was placed a priori into one of four plant functional type (PFT) categories: drought-tolerant versus drought-intolerant based on observed mortality rates, and subdivided into early- versus late-successional based on wood density. We tested the hypotheses that the measured traits would be significantly different between the four PFTs and that they would be spatially conserved across the two experimental sites. Xylem-P50 , TLP, and πo , but not ε, occurred at significantly higher water potentials for the drought-intolerant PFT compared to the drought-tolerant PFT; however, there were no significant differences between the early- and late-successional PFTs. These results suggest that these three traits are important for determining drought tolerance, and are largely independent of wood density-a trait commonly associated with successional status. Differences in these physiological traits that occurred between the drought-tolerant and drought-intolerant PFTs were conserved between the two research sites, even though they had different soil types and dry-season lengths. This more detailed understanding of how xylem and leaf hydraulic traits vary between co-occuring drought-tolerant and drought-intolerant tropical tree species promises to facilitate a much-needed improvement in the representation of plant hydraulics within terrestrial ecosystem and biosphere models, which will enhance our ability to make robust predictions of how future changes in climate will affect tropical forests
Índices de tendências climáticas associados à “ilha de calor” em Macapá-AP (1968-2010)
O objetivo da pesquisa é analisar as tendências de variação climática urbanade Macapá com base nas variáveis meteorológicas diárias de temperaturado ar e precipitação pluviométrica. A metodologia consistiu de duas etapas:a) coleta, ordenamento e tabulação de dados no período de 1968 a 2010; b)uso do aplicativo RClimDex 2.12.2/IPCC para estimar os parâmetrosestatísticos indicadores de variação climática urbana. Os resultados acusamtreze indicadores estatísticos significativos (0,05 < p < 0,1). Como conclusão,observa-se que o comportamento dos indicadores quantificados pode estarassociado com o fenômeno de formação de “ilha de calor” urbana. Contudo,as características geográficas de Macapá parecem apresentar umasuavização deste efeito devido às brisas fluviais do rio Amazonas
Short-term effects of drought on tropical forest do not fully predict impacts of repeated or long-term drought: gas exchange versus growth
Are short-term responses by tropical rainforest to drought (e.g. during El Niño) sufficient to predict changes over the long-term, or from repeated drought? Using the world’s only long-term (16-year) drought experiment in tropical forest we examine predictability from short-term measurements (1 – 2 years). Transpiration was maximized in droughted forest: it consumed all available throughfall throughout the 16 years of study. Leaf photosynthetic capacity ðVcmax Þ was maintained, but only when averaged across tree size groups. Annual transpiration in droughted forest was less than in control, with initial reductions (at high biomass) imposed by foliar stomatal control. Tree mortality increased after year three, leading to an overall biomass loss of 40%; over the long-term, the main constraint on transpiration was thus imposed by the associated reduction in sapwood area. Altered tree mortality risk may prove predictable from soil and plant hydraulics, but additional monitoring is needed to test whether future biomass will stabilize or collapse. Allocation of assimilate differed over time: stem growth and reproductive output declined in the short-term, but following mortality-related changes in resource availability, both showed long-term resilience, with partial or full recovery. Understanding and simulation of these phenomena and related trade-offs in allocation will advance more effectively through greater use of optimization and probabilistic modelling approaches. This article is part of a discussion meeting issue ‘The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms and implications’.This work was supported by UK NERC grant NE/J011002/1 to P.M. and M.M., NERC independent fellowship grant NE/N014022/1 to L.R., ARC grants FT110100457 and DP170104091 to P.M., CNPQ grant 457914/2013-0/MCTI/CNPq/FNDCT/LBA/
ESECAFLOR to A.L.d.C. It was previously supported by NERC NER/A/S/2002/00487, NERC GR3/11706, EU FP5-Carbonsink and EU FP7-Amazalert to P.M., and by a grant from the Gordon and Betty Moore Foundation
Influência da Temperatura do Solo no Efluxo de Co2 do Solo em uma Floresta Tropical da Amazônia Oriental
It was studied the variability of the average hourly flux of CO2associated with the soil temperature and soil moisture in an area of tropicalrain forest in Amazonia, in the experimental site of the NationalForest Caxiuanã, State of Pará. Purpose was to evaluate the influence oftemperature and soil moisture on CO2 efflux from soil and estimate thevalue of Q10. The soil temperature did not get a good correlation withsoil CO2 efflux.Estudou-se a variabilidade média horário do fluxo de CO2 dosolo associado à temperatura e umidade do solo em uma área de florestatropical chuvosa na Amazônia, no sítio experimental na Floresta Nacionalde Caxiuanã, no Estado do Pará. Objetivo foi avaliar a influência datemperatura e umidade do solo no efluxo de CO2 do solo e estimar ovalor do Q10. A temperatura do solo não obteve uma boa correlação comefluxo de CO2 do solo
Plasticity in leaf-level water relations of tropical rainforest trees in response to experimental drought
Summary The tropics are predicted to become warmer and drier, and understanding the sensitivity of tree species to drought is important for characterizing the risk to forests of climate change. This study makes use of a long-term drought experiment in the Amazon rainforest to evaluate the role of leaf-level water relations, leaf anatomy and their plasticity in response to drought in six tree genera. The variables (osmotic potential at full turgor, turgor loss point, capacitance, elastic modulus, relative water content and saturated water content) were compared between seasons and between plots (control and through-fall exclusion) enabling a comparison between short- and long-term plasticity in traits. Leaf anatomical traits were correlated with water relation parameters to determine whether water relations differed among tissues. The key findings were: osmotic adjustment occurred in response to the long-term drought treatment; species resistant to drought stress showed less osmotic adjustment than drought-sensitive species; and water relation traits were correlated with tissue properties, especially the thickness of the abaxial epidermis and the spongy mesophyll. These findings demonstrate that cell-level water relation traits can acclimate to long-term water stress, and highlight the limitations of extrapolating the results of short-term studies to temporal scales associated with climate change
Short-term effects of drought on tropical forest do not fully predict impacts of repeated or long-term drought: gas exchange vs growth.
This is the final version. Available from the Royal Society via the DOI in this record.Are short-term responses by tropical rainforest to drought (e.g. during El Niño) sufficient to predict changes over the long-term, or from repeated drought? Using the world's only long-term (16-year) drought experiment in tropical forest we examine predictability from short-term measurements (1-2 years). Transpiration was maximized in droughted forest: it consumed all available throughfall throughout the 16 years of study. Leaf photosynthetic capacity [Formula: see text] was maintained, but only when averaged across tree size groups. Annual transpiration in droughted forest was less than in control, with initial reductions (at high biomass) imposed by foliar stomatal control. Tree mortality increased after year three, leading to an overall biomass loss of 40%; over the long-term, the main constraint on transpiration was thus imposed by the associated reduction in sapwood area. Altered tree mortality risk may prove predictable from soil and plant hydraulics, but additional monitoring is needed to test whether future biomass will stabilize or collapse. Allocation of assimilate differed over time: stem growth and reproductive output declined in the short-term, but following mortality-related changes in resource availability, both showed long-term resilience, with partial or full recovery. Understanding and simulation of these phenomena and related trade-offs in allocation will advance more effectively through greater use of optimization and probabilistic modelling approaches.This article is part of a discussion meeting issue 'The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms and implications'.This work was supported by UK NERC grant NE/J011002/1 to P.M. and M.M., NERC independent fellowship grant NE/N014022/1 to L.R., ARC grants FT110100457 and DP170104091 to P.M., CNPQ grant 457914/2013-0/MCTI/CNPq/FNDCT/LBA/ESECAFLOR to A.L.d.C. It was previously supported by NERC NER/A/S/2002/00487, NERC GR3/11706, EU FP5-Carbonsink and EU FP7-Amazalert to P.M., and by a grant from the Gordon and Betty Moore Foundation
Limited acclimation in leaf anatomy to experimental drought in tropical forest trees
Dry periods are predicted to become more frequent and severe in the future in some parts of the tropics, including Amazonia, potentially causing reduced productivity, higher tree mortality and increased emissions of stored carbon. Using a long-term (12 year) through-fall exclusion (TFE) experiment in the tropics, we test the hypothesis that trees produce leaves adapted to cope with higher levels of water stress, by examining the following leaf characteristics: area, thickness, leaf mass per area, vein density, stomatal density, the thickness of palisade mesophyll, spongy mesophyll and both of the epidermal layers, internal cavity volume and the average cell sizes of the palisade and spongy mesophyll. We also test whether differences in leaf anatomy are consistent with observed differential drought-induced mortality responses among taxa, and look for relationships between leaf anatomy, and leaf water relations and gas exchange parameters. Our data show that trees do not produce leaves that are more xeromorphic in response to 12 years of soil moisture deficit. However, the drought treatment did result in increases in the thickness of the adaxial epidermis (TFE: 20.5 ± 1.5 µm, control: 16.7 ± 1.0 µm) and the internal cavity volume (TFE: 2.43 ± 0.50 mm(3) cm(−2), control: 1.77 ± 0.30 mm(3 )cm(−2)). No consistent differences were detected between drought-resistant and drought-sensitive taxa, although interactions occurred between drought-sensitivity status and drought treatment for the palisade mesophyll thickness (P = 0.034) and the cavity volume of the leaves (P = 0.025). The limited response to water deficit probably reflects a tight co-ordination between leaf morphology, water relations and photosynthetic properties. This suggests that there is little plasticity in these aspects of plant anatomy in these taxa, and that phenotypic plasticity in leaf traits may not facilitate the acclimation of Amazonian trees to the predicted future reductions in dry season water availability
Plasticity in leaf-level water relations of tropical rainforest trees in response to experimental drought
The tropics are predicted to become warmer and drier, and understanding the sensitivity of tree species to drought is important for characterizing the risk to forests of climate change. This study makes use of a long-term drought experiment in the Amazon rainforest to evaluate the role of leaf-level water relations, leaf anatomy and their plasticity in response to drought in six tree genera. The variables (osmotic potential at full turgor, turgor loss point, capacitance, elastic modulus, relative water content and saturated water content) were compared between seasons and between plots (control and through-fall exclusion) enabling a comparison between short- and long-term plasticity in traits. Leaf anatomical traits were correlated with water relation parameters to determine whether water relations differed among tissues. The key findings were: osmotic adjustment occurred in response to the long-term drought treatment; species resistant to drought stress showed less osmotic adjustment than drought-sensitive species; and water relation traits were correlated with tissue properties, especially the thickness of the abaxial epidermis and the spongy mesophyll. These findings demonstrate that cell-level water relation traits can acclimate to long-term water stress, and highlight the limitations of extrapolating the results of short-term studies to temporal scales associated with climate change
- …