647 research outputs found

    SARS-CoV-2 immunity and vaccine strategies in people with HIV

    Get PDF
    Current SARS-CoV-2 vaccines, based on the ancestral Wuhan strain, were developed rapidly to meet the needs of a devastating global pandemic. People living with HIV (PLWH) have been designated as a priority group for SARS-CoV-2 vaccination in most regions and varying primary courses (2 or 3-dose schedule) and additional boosters are recommended depending on current CD4+ T cell count and/or detectable HIV viraemia. From the current published data, licensed vaccines are safe for PLWH, and stimulate robust responses to vaccination in those well controlled on antiretroviral therapy and with high CD4+ T cell counts. Data on vaccine efficacy and immunogenicity remain, however, scarce in PLWH, especially in people with advanced disease. A greater concern is a potentially diminished immune response to the primary course and subsequent boosters, as well as an attenuated magnitude and durability of protective immune responses. A detailed understanding of the breadth and durability of humoral and T cell responses to vaccination, and the boosting effects of natural immunity to SARS-CoV-2, in more diverse populations of PLWH with a spectrum of HIV-related immunosuppression is therefore critical. This article summarises focused studies of humoral and cellular responses to SARS-CoV-2 infection in PLWH and provides a comprehensive review of the emerging literature on SARS-CoV-2 vaccine responses. Emphasis is placed on the potential effect of HIV-related factors and presence of co-morbidities modulating responses to SARS-CoV-2 vaccination, and the remaining challenges informing the optimal vaccination strategy to elicit enduring responses against existing and emerging variants in PLWH. Lay Abstract People living with Human Immunodeficiency Virus (PLWH), appear to be at a higher risk (approximately 15%) of becoming more seriously unwell if they are infected with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the virus that causes COVID-19 disease, and at least twice as likely to die from COVID-19 as the rest of the population. SARS-CoV-2 vaccination and boosters are recommended for all PLWH. However, there is limited information about the protective immune responses to both vaccination (and actual infection), the protection against serious COVID-19 disease, and whether the safety profile of the vaccines, which are very safe in the general population, differs in PLWH. Here we summarise findings from studies which looked specifically at vaccine-related immune responses in PLWH, and discuss factors – such as age, known to impact negatively on immune responses in the general population, to see whether this effect is worse in PLWH. A better understanding of these issues will help guide tailored vaccination and prevention strategies for PLWH

    Exploiting Pan Influenza A and Pan Influenza B Pseudotype Libraries for Efficient Vaccine Antigen Selection.

    Get PDF
    We developed an influenza hemagglutinin (HA) pseudotype library encompassing Influenza A subtypes HA1-18 and Influenza B subtypes (both lineages) to be employed in influenza pseudotype microneutralization (pMN) assays. The pMN is highly sensitive and specific for detecting virus-specific neutralizing antibodies against influenza viruses and can be used to assess antibody functionality in vitro. Here we show the production of these viral HA pseudotypes and their employment as substitutes for wildtype viruses in influenza neutralization assays. We demonstrate their utility in detecting serum responses to vaccination with the ability to evaluate cross-subtype neutralizing responses elicited by specific vaccinating antigens. Our findings may inform further preclinical studies involving immunization dosing regimens in mice and may help in the creation and selection of better antigens for vaccine design. These HA pseudotypes can be harnessed to meet strategic objectives that contribute to the strengthening of global influenza surveillance, expansion of seasonal influenza prevention and control policies, and strengthening pandemic preparedness and response

    Natural killer cell responses during SARS-CoV-2 infection and vaccination in people living with HIV-1

    Get PDF
    Natural killer (NK) cell subsets with adaptive properties are emerging as regulators of vaccine-induced T and B cell responses and are specialized towards antibody-dependent functions contributing to SARS-CoV-2 control. Although HIV-1 infection is known to affect the NK cell pool, the additional impact of SARS-CoV-2 infection and/or vaccination on NK cell responses in people living with HIV (PLWH) has remained unexplored. Our data show that SARS-CoV-2 infection skews NK cells towards a more differentiated/adaptive CD57+FcεRIγ- phenotype in PLWH. A similar subset was induced following vaccination in SARS-CoV-2 naïve PLWH in addition to a CD56bright population with cytotoxic potential. Antibody-dependent NK cell function showed robust and durable responses to Spike up to 148 days post-infection, with responses enriched in adaptive NK cells. NK cell responses were further boosted by the first vaccine dose in SARS-CoV-2 exposed individuals and peaked after the second dose in SARS-CoV-2 naïve PLWH. The presence of adaptive NK cells associated with the magnitude of cellular and humoral responses. These data suggest that features of adaptive NK cells can be effectively engaged to complement and boost vaccine-induced adaptive immunity in potentially more vulnerable groups such as PLWH

    Double Diffraction Dissociation at the Fermilab Tevatron Collider

    Get PDF
    We present results from a measurement of double diffraction dissociation in pˉp\bar pp collisions at the Fermilab Tevatron collider. The production cross section for events with a central pseudorapidity gap of width Δη0>3\Delta\eta^0>3 (overlapping η=0\eta=0) is found to be 4.43±0.02(stat)±1.18(syst)mb4.43\pm 0.02{(stat)}{\pm 1.18}{(syst) mb} [3.42±0.01(stat)±1.09(syst)mb3.42\pm 0.01{(stat)}{\pm 1.09}{(syst) mb}] at s=1800\sqrt{s}=1800 [630] GeV. Our results are compared with previous measurements and with predictions based on Regge theory and factorization.Comment: 10 pages, 4 figures, using RevTeX. Submitted to Physical Review Letter

    Search for Gluinos and Scalar Quarks in ppˉp\bar{p} Collisions at s=1.8\sqrt{s}=1.8 TeV using the Missing Energy plus Multijets Signature

    Get PDF
    We have performed a search for gluinos (\gls) and squarks (\sq) in a data sample of 84 pb1^{-1} of \ppb collisions at s\sqrt{s} = 1.8 TeV, recorded by the Collider Detector at Fermilab, by investigating the final state of large missing transverse energy and 3 or more jets, a characteristic signature in R-parity-conserving supersymmetric models. The analysis has been performed `blind', in that the inspection of the signal region is made only after the predictions from Standard Model backgrounds have been calculated. Comparing the data with predictions of constrained supersymmetric models, we exclude gluino masses below 195 \gev (95% C.L.), independent of the squark mass. For the case \msq \approx \mgls, gluino masses below 300 \gev are excluded.Comment: 7 pages, 3 figure

    Search for Kaluza-Klein Graviton Emission in ppˉp\bar{p} Collisions at s=1.8\sqrt{s}=1.8 TeV using the Missing Energy Signature

    Get PDF
    We report on a search for direct Kaluza-Klein graviton production in a data sample of 84 pb1{pb}^{-1} of \ppb collisions at s\sqrt{s} = 1.8 TeV, recorded by the Collider Detector at Fermilab. We investigate the final state of large missing transverse energy and one or two high energy jets. We compare the data with the predictions from a 3+1+n3+1+n-dimensional Kaluza-Klein scenario in which gravity becomes strong at the TeV scale. At 95% confidence level (C.L.) for nn=2, 4, and 6 we exclude an effective Planck scale below 1.0, 0.77, and 0.71 TeV, respectively.Comment: Submitted to PRL, 7 pages 4 figures/Revision includes 5 figure

    Measurement of the average time-integrated mixing probability of b-flavored hadrons produced at the Tevatron

    Get PDF
    We have measured the number of like-sign (LS) and opposite-sign (OS) lepton pairs arising from double semileptonic decays of bb and bˉ\bar{b}-hadrons, pair-produced at the Fermilab Tevatron collider. The data samples were collected with the Collider Detector at Fermilab (CDF) during the 1992-1995 collider run by triggering on the existence of μμ\mu \mu and eμe \mu candidates in an event. The observed ratio of LS to OS dileptons leads to a measurement of the average time-integrated mixing probability of all produced bb-flavored hadrons which decay weakly, χˉ=0.152±0.007\bar{\chi} = 0.152 \pm 0.007 (stat.) ±0.011\pm 0.011 (syst.), that is significantly larger than the world average χˉ=0.118±0.005\bar{\chi} = 0.118 \pm 0.005.Comment: 47 pages, 10 figures, 15 tables Submitted to Phys. Rev.

    Diffractive Dijet Production at sqrt(s)=630 and 1800 GeV at the Fermilab Tevatron

    Get PDF
    We report a measurement of the diffractive structure function FjjDF_{jj}^D of the antiproton obtained from a study of dijet events produced in association with a leading antiproton in pˉp\bar pp collisions at s=630\sqrt s=630 GeV at the Fermilab Tevatron. The ratio of FjjDF_{jj}^D at s=630\sqrt s=630 GeV to FjjDF_{jj}^D obtained from a similar measurement at s=1800\sqrt s=1800 GeV is compared with expectations from QCD factorization and with theoretical predictions. We also report a measurement of the ξ\xi (xx-Pomeron) and β\beta (xx of parton in Pomeron) dependence of FjjDF_{jj}^D at s=1800\sqrt s=1800 GeV. In the region 0.035<ξ<0.0950.035<\xi<0.095, t<1|t|<1 GeV2^2 and β<0.5\beta<0.5, FjjD(β,ξ)F_{jj}^D(\beta,\xi) is found to be of the form β1.0±0.1ξ0.9±0.1\beta^{-1.0\pm 0.1} \xi^{-0.9\pm 0.1}, which obeys β\beta-ξ\xi factorization.Comment: LaTeX, 9 pages, Submitted to Phys. Rev. Letter

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    A Study of B0 -> J/psi K(*)0 pi+ pi- Decays with the Collider Detector at Fermilab

    Get PDF
    We report a study of the decays B0 -> J/psi K(*)0 pi+ pi-, which involve the creation of a u u-bar or d d-bar quark pair in addition to a b-bar -> c-bar(c s-bar) decay. The data sample consists of 110 1/pb of p p-bar collisions at sqrt{s} = 1.8 TeV collected by the CDF detector at the Fermilab Tevatron collider during 1992-1995. We measure the branching ratios to be BR(B0 -> J/psi K*0 pi+ pi-) = (8.0 +- 2.2 +- 1.5) * 10^{-4} and BR(B0 -> J/psi K0 pi+ pi-) = (1.1 +- 0.4 +- 0.2) * 10^{-3}. Contributions to these decays are seen from psi(2S) K(*)0, J/psi K0 rho0, J/psi K*+ pi-, and J/psi K1(1270)
    corecore