12 research outputs found
The ESSnuSB design study: overview and future prospects
ESSnuSB is a design study for an experiment to measure the CP violation in
the leptonic sector at the second neutrino oscillation maximum using a neutrino
beam driven by the uniquely powerful ESS linear accelerator. The reduced impact
of systematic errors on sensitivity at the second maximum allows for a very
precise measurement of the CP violating parameter. This review describes the
fundamental advantages of measurement at the 2nd maximum, the necessary
upgrades to the ESS linac in order to produce a neutrino beam, the near and far
detector complexes, the expected physics reach of the proposed ESSnuSB
experiment, concluding with the near future developments aimed at the project
realization.Comment: 19 pages, 11 figures; Corrected minor error in alphabetical ordering
of the authors: the author list is now fully alphabetical w.r.t. author
surnames as was intended. Corrected an incorrect affiliation for two authors
per their reques
A comprehensive, high resolution, genomic transcript map of human skeletal muscle.
13nonenoneBORTOLUZZI S; RAMPOLDI L; SIMIONATI B; ZIMBELLO R; A. BARBON; DALESSIO F; NATASCIA T; PALLAVICINI A; TOPPO S; CANNATA N; VALLE G; LANFRANCHI G; DANIELI G.ABortoluzzi, S; Rampoldi, L; Simionati, B; Zimbello, R; Barbon, Alessandro; Dalessio, F; Natascia, T; Pallavicini, A; Toppo, S; Cannata, N; Valle, G; Lanfranchi, G; Danieli, G. A
The extreme light infrastructure—nuclear physics (ELI-NP) facility: new horizons in physics with 10 PW ultra-intense lasers and 20 MeV brilliant gamma beams
International audienceThe European Strategy Forum on Research Infrastructures (ESFRI) has selected in 2006 a proposal based on ultra-intense laser fields with intensities reaching up to 1022–1023 W cm−2 called 'ELI' for Extreme Light Infrastructure. The construction of a large-scale laser-centred, distributed pan-European research infrastructure, involving beyond the state-of-the-art ultra-short and ultra-intense laser technologies, received the approval for funding in 2011–2012. The three pillars of the ELI facility are being built in Czech Republic, Hungary and Romania. The Romanian pillar is ELI-Nuclear Physics (ELI-NP). The new facility is intended to serve a broad national, European and International science community. Its mission covers scientific research at the frontier of knowledge involving two domains. The first one is laser-driven experiments related to nuclear physics, strong-field quantum electrodynamics and associated vacuum effects. The second is based on a Compton backscattering high-brilliance and intense low-energy gamma beam (<20 MeV), a marriage of laser and accelerator technology which will allow us to investigate nuclear structure and reactions as well as nuclear astrophysics with unprecedented resolution and accuracy. In addition to fundamental themes, a large number of applications with significant societal impact are being developed. The ELI-NP research centre will be located in Măgurele near Bucharest, Romania. The project is implemented by 'Horia Hulubei' National Institute for Physics and Nuclear Engineering (IFIN-HH). The project started in January 2013 and the new facility will be fully operational by the end of 2019. After a short introduction to multi-PW lasers and multi-MeV brilliant gamma beam scientific and technical description of the future ELI-NP facility as well as the present status of its implementation of ELI-NP, will be presented. The science and examples of societal applications at reach with these electromagnetic probes with much improved performances provided at this new facility will be discussed with a special focus on day-one experiments and associated novel instrumentation
The European Spallation Source neutrino super-beam conceptual design report
International audienceA design study, named ESSνSB for European Spallation Source neutrino Super Beam, has been carried out during the years 2018–2022 of how the 5 MW proton linear accelerator of the European Spallation Source under construction in Lund, Sweden, can be used to produce the world’s most intense long-baseline neutrino beam. The high beam intensity will allow for measuring the neutrino oscillations near the second oscillation maximum at which the CP violation signal is close to three times higher than at the first maximum, where other experiments measure. This will enable CP violation discovery in the leptonic sector for a wider range of values of the CP violating phase δCP and, in particular, a higher precision measurement of δCP. The present Conceptual Design Report describes the results of the design study of the required upgrade of the ESS linac, of the accumulator ring used to compress the linac pulses from 2.86 ms to 1.2 µs, and of the target station, where the 5 MW proton beam is used to produce the intense neutrino beam. It also presents the design of the near detector, which is used to monitor the neutrino beam as well as to measure neutrino cross sections, and of the large underground far detector located 360 km from ESS, where the magnitude of the oscillation appearance of νe from νμ is measured. The physics performance of the ESSνSB research facility has been evaluated demonstrating that after 10 years of data-taking, leptonic CP violation can be detected with more than 5 standard deviation significance over 70% of the range of values that the CP violation phase angle δCP can take and that δCP can be measured with a standard error less than 8° irrespective of the measured value of δCP. These results demonstrate the uniquely high physics performance of the proposed ESSνSB research facilit
The European Spallation Source neutrino Super Beam Conceptual Design Report
This conceptual design report provides a detailed account of the European Spallation Source neutrino Super Beam (ESSSB) feasibility study. This facility has been proposed after the measurements reported in 2012 of a relatively large value of the neutrino mixing angle , which raised the possibility of observing potential CP violation in the leptonic sector with conventional neutrino beams. The measured value of also privileges the oscillation maximum for the discovery of CP violation instead of the more typically studied maximum. The sensitivity at this oscillation maximum is about three times higher than at the one, which implies a reduced influence of systematic errors. Working at the oscillation maximum requires a very intense neutrino beam with an appropriate energy. The world's most intense pulsed spallation neutron source, the European Spallation Source (ESS), will have a proton linac operating at 5 MW power, 2 GeV kinetic energy and 14~Hz repetition rate (3~ms pulse duration, 4% duty cycle) for neutron production. In this design study it is proposed to double the repetition rate and compress the beam pulses to the level of microseconds in order to provide an additional 5~MW proton beam for neutrino production. The physics performance has been evaluated for such a neutrino super beam, in conjunction with a megaton-scale underground water Cherenkov neutrino detector installed at a distance of 360--550 km from ESS. The ESS proton linac upgrades, the accumulator ring required for proton-pulse compression, the target station design and optimisation, the near and far detector complexes, and the physics potential of the facility are all described in this report. The ESS linac will be operational by 2025, at which point the implementation of upgrades for the neutrino facility could begin
The ESSnuSB design study: overview and future prospects
International audienceESSnuSB is a design study for an experiment to measure the CP violation in the leptonic sector at the second neutrino oscillation maximum using a neutrino beam driven by the uniquely powerful ESS linear accelerator. The reduced impact of systematic errors on sensitivity at the second maximum allows for a very precise measurement of the CP violating parameter. This review describes the fundamental advantages of measurement at the 2nd maximum, the necessary upgrades to the ESS linac in order to produce a neutrino beam, the near and far detector complexes, the expected physics reach of the proposed ESSnuSB experiment, concluding with the near future developments aimed at the project realization