89 research outputs found

    Education, lifetime labor supply, and longevity improvements

    Get PDF
    This paper presents an analysis of the differential role of mortality for the optimal schooling and retirement age when the accumulation of human capital follows the so-called “Ben-Porath mechanism”. We set up a life-cycle model of consumption and labor supply at the extensive margin that allows for endogenous human capital formation. This paper makes two important contributions. First, we provide the conditions under which a decrease in mortality leads to a longer education period and an earlier retirement age. Second, those conditions are decomposed into a Ben-Porath mechanism and a lifetime-human wealth effect vs. the years-to-consume effect. Finally, using US and Swedish data for cohorts born between 1890 and 2000, we show that our model can match the empirical evidence

    Role of thyroid hormones in early postnatal development of skeletal muscle and its implications for undernutrition

    Get PDF
    Published online by Cambridge University Press 09 Mar 2007Energy intake profoundly influences many endocrine axes which in turn play a central role in development. The specific influence of a short period of mild hypothyroidism, similar to that induced by undernutrition, in regulating muscle development has been assessed in a large mammal during early postnatal life. Hypothyroidism was induced by providing methimazole and iopanoic acid in the feed of piglets between 4 and 14 d of age, and controls were pair-fed to the energy intake of their hypothyroid littermates. Thyroid status was evaluated, and myofibre differentiation and cation pump concentrations were then assessed in the following functionally distinct muscles: longissimus dorsi (l. dorsi), soleus and rhomboideus. Reductions in plasma concentrations of thyroxine (T4; 32%, P < O·Ol), triiodothyronine (T3;48%, P < 0·001), free T3, (58%, P < 0·001)and hepatic 5'-monodeiodinase (EC 1.11.1.8) activity (74%, P < 0·001) occurred with treatment. Small, although significant, increases in the proportion of type I slow-twitch oxidative fibres occurred with mild hypothyroidism, in l. dorsi (2%, P < 0·01) and soleus(7%, P < 0·01). Nuclear T3-receptor concentration in l. dorsi of hypothyroid animals compared with controls increased by 46% (P < 0·001), a response that may represent a homeostatic mechanism making muscle more sensitive to low levels of circulating thyroid hormones. Nevertheless, Na+, K+-ATPase (EC 3.6.1.37) concentration was reduced by 15–16% in all muscles (l.dorsi P< 0·05,soleus P < 0·001, rhomboideus P < 0·05), and Ca2+-ATPase (EC 3.6.1.38) concentration was significantly reduced in the two slow-twitch muscles: by 22% in rhomboideus (P < 0·001) and 23% in soleus (P < 0·05). It is concluded that during early postnatal development of large mammals a period of mild hypothyroidism, comparable with that found during undernutrition, induces changes in myofibre differentiation and a down-regulation of cation pumps in skeletal muscle. Such changes would result in slowness of movement and muscle weakness, and also reduce ATP hydrolysis with a concomitant improvement in energetic efficiency.A. P. Harrison, D. R. Tivey, T. Clausen, C. Duchamp and M. J. Daunce

    Disruption of Conscious Access in Psychosis Is Associated with Altered Structural Brain Connectivity

    Get PDF
    According to global neuronal workspace (GNW) theory, conscious access relies on long-distance cerebral connectivity to allow a global neuronal ignition coding for conscious content. In patients with schizophrenia and bipolar disorder, both alterations in cerebral connectivity and an increased threshold for conscious perception have been reported. The implications of abnormal structural connectivity for disrupted conscious access and the relationship between these two deficits and psychopathology remain unclear. The aim of this study was to determine the extent to which structural connectivity is correlated with consciousness threshold, particularly in psychosis. We used a visual masking paradigm to measure consciousness threshold, and diffusion MRI tractography to assess structural connectivity in 97 humans of either sex with varying degrees of psychosis: healthy control subjects (n = 46), schizophrenia patients (n = 25), and bipolar disorder patients with (n = 17) and without (n = 9) a history of psychosis. Patients with psychosis (schizophrenia and bipolar disorder with psychotic features) had an elevated masking threshold compared with control subjects and bipolar disorder patients without psychotic features. Masking threshold correlated negatively with the mean general fractional anisotropy of white matter tracts exclusively within the GNW network (inferior frontal-occipital fasciculus, cingulum, and corpus callosum). Mediation analysis demonstrated that alterations in long-distance connectivity were associated with an increased masking threshold, which in turn was linked to psychotic symptoms. Our findings support the hypothesis that long-distance structural connectivity within the GNW plays a crucial role in conscious access, and that conscious access may mediate the association between impaired structural connectivity and psychosis

    Absence of CD34 on Murine Skeletal Muscle Satellite Cells Marks a Reversible State of Activation during Acute Injury

    Get PDF
    Background: Skeletal muscle satellite cells are myogenic progenitors that reside on myofiber surface beneath the basal lamina. In recent years satellite cells have been identified and isolated based on their expression of CD34, a sialomucin surface receptor traditionally used as a marker of hematopoietic stem cells. Interestingly, a minority of satellite cells lacking CD34 has been described. Methodology/Principal Findings: In order to elucidate the relationship between CD34+ and CD34- satellite cells we utilized fluorescence-activated cell sorting (FACS) to isolate each population for molecular analysis, culture and transplantation studies. Here we show that unless used in combination with a7 integrin, CD34 alone is inadequate for purifying satellite cells. Furthermore, the absence of CD34 marks a reversible state of activation dependent on muscle injury. Conclusions/Significance: Following acute injury CD34- cells become the major myogenic population whereas the percentage of CD34+ cells remains constant. In turn activated CD34- cells can reverse their activation to maintain the pool of CD34+ reserve cells. Such activation switching and maintenance of reserve pool suggests the satellite cell compartment is tightly regulated during muscle regeneration

    The ER-Bound RING Finger Protein 5 (RNF5/RMA1) Causes Degenerative Myopathy in Transgenic Mice and Is Deregulated in Inclusion Body Myositis

    Get PDF
    Growing evidence supports the importance of ubiquitin ligases in the pathogenesis of muscular disorders, although underlying mechanisms remain largely elusive. Here we show that the expression of RNF5 (aka RMA1), an ER-anchored RING finger E3 ligase implicated in muscle organization and in recognition and processing of malfolded proteins, is elevated and mislocalized to cytoplasmic aggregates in biopsies from patients suffering from sporadic-Inclusion Body Myositis (sIBM). Consistent with these findings, an animal model for hereditary IBM (hIBM), but not their control littermates, revealed deregulated expression of RNF5. Further studies for the role of RNF5 in the pathogenesis of s-IBM and more generally in muscle physiology were performed using RNF5 transgenic and KO animals. Transgenic mice carrying inducible expression of RNF5, under control of β-actin or muscle specific promoter, exhibit an early onset of muscle wasting, muscle degeneration and extensive fiber regeneration. Prolonged expression of RNF5 in the muscle also results in the formation of fibers containing congophilic material, blue-rimmed vacuoles and inclusion bodies. These phenotypes were associated with altered expression and activity of ER chaperones, characteristic of myodegenerative diseases such as s-IBM. Conversely, muscle regeneration and induction of ER stress markers were delayed in RNF5 KO mice subjected to cardiotoxin treatment. While supporting a role for RNF5 Tg mice as model for s-IBM, our study also establishes the importance of RNF5 in muscle physiology and its deregulation in ER stress associated muscular disorders

    Purification of a troponin I-like factor from pig platelet

    Get PDF
    AbstractA troponin I-like factor has been purified from pig platelet by G150 Sephadex filtration of a low ionic strength extract, acidification at pH 4.2, ion exchange on DE-52 cellulose, and affinity chromatography on calmodulin-Sepharose. This protein (Mr 17000), together with pig brain calmodulin and platelet tropomyosin, is able to participate to the reconstitution in vitro of a thin filament-like complex which modulates with 55% calcium sensitivity11Calcium sensitivity = [1 - (ATPase EGTA/ATPase calcium)] × 100 the platelet actin-activated Mg2+-dependent ATPase activity of rabbit skeletal muscle myosin
    corecore