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Abstract

This paper presents an analysis of the differential role of mortality for the optimal school-
ing and retirement age when the accumulation of human capital follows the so-called
“Ben-Porath mechanism”. We set up a life-cycle model of consumption and labor sup-
ply at the extensive margin that allows for endogenous human capital formation. This
paper makes two important contributions. First, we provide the conditions under which
a decrease in mortality leads to a longer education period and an earlier retirement age.
Second, those conditions are decomposed into a Ben-Porath mechanism and a lifetime-
human wealth effect vs. the years-to-consume effect. Finally, using US and Swedish data
for cohorts born between 1890 and 2000, we show that our model can match the empirical
evidence.
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1. Introduction

In many countries, economic development has been accompanied with significant in-
creases in life expectancy and reductions in labor supply. Over the nineteenth and twen-
tieth century record life expectancy (at birth) has increased by 40 years at a rate of 3
months per year (Oeppen and Vaupel, 2002; Lee, 2003), while labor supply has decreased
at two extensive margins: later entrance in the labor market and earlier retirement.1

These historical trends are shown in Figure 1 for males born in the United States from
1850 to 1930. Between the 1850 and 1930 cohorts, average years of schooling increased
from 8 to 13.28 (an increase of 5 years), average retirement age decreased from 69 to 63.8
(a declined of 5 years), and the life expectancy at age 5 increased from 52.5 to 66.7 (an
increase of 14 years).
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Figure 1: Life expectancy at age 5, average years of schooling, and average retirement age for US men
by birth cohort

Source: Hazan (2009). The average retirement age were calculated using the labor force participation

rates from age 45 to 80.

These trends are not exclusively of the United States but are, instead, common
to most advanced countries. Prior to industrialization, male literacy rates started to
increase in the most advanced countries (Cippola, 1969; Cervellati and Sunde, 2005;
Boucekkine et al., 2007). This process continued with an expansion of primary educa-
tion enrollment rates at the end of the nineteenth century and first half of the twentieth
century (Benavot and Riddle, 1988). By 1950, the average length of schooling for males
was around six years in the most advanced countries and has increased up to twelve years
in 2010 (Barro and Lee, 2013). Over the same period, labor force participation rates for
old workers started to fall until recently, even before the introduction of pension systems

1Before 1950, most of the gain in life expectancy was due to large reductions in death rates at younger
ages (Oeppen and Vaupel, 2002). Still, although at a lower rate, the life expectancy at ages 6 and 16
have also risen for the last 160 years in developed countries like Sweden at a steady pace of 13/4 and 11/2
months per year, respectively.
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(Costa, 1998; Schieber and Shoven, 1999). In 1970, the average retirement age was 68 in
OECD countries and has declined to age 63 in 2010 – see OECD (2009).

Existing theoretical models that analyze the effect of mortality on education and
retirement implicitly assume a positive causal relationship between the length of school-
ing, retirement, and life expectancy; for example Boucekkine et al. (2002), Echevarria
(2004), Echevarria and Iza (2006), Ferreira and Pessoa (2007), and Zhang and Zhang
(2009), among others. This is because an increase in the length of schooling above the
optimum needs to be compensated by working longer in order to maintain the same level
of consumption. Thus, according to the existing literature, a decline in mortality leads to
an increase in education and a postponement of the retirement age, which contradicts the
historical empirical evidence. The motivation of our study is therefore to provide possible
explanations under which a decrease in mortality leads to an increase in schooling and
early retirement.

There are two important dimensions to be considered when modeling the effect of mor-
tality on schooling and retirement. First, the observed positive link between human capi-
tal investment and life expectancy that is theoretically replicated through the well-known
Ben-Porath (1967)’s mechanism (de la Croix and Licandro, 1999; Kalemli-Ozcan et al.,
2000; Zhang et. al., 2001, 2003; Cervellati and Sunde, 2005; Soares, 2005; Zhang and Zhang,
2005; Jayachandran and Lleras-Muney, 2009; Oster et al., 2013), except for Hazan and Zoabi
(2006). Second, the recent findings showing that the link between the life expectancy and
labor supply depends on the age pattern of mortality improvements. In particular, on the
one side, for a given retirement age it has been shown that only improvements in survival
during prime-working ages –and not longevity per se– increase human capital investment
(Cervellati and Sunde, 2013; de la Croix, 2015). On the other, for a given educational
attainment mortality declines during adulthood may cause early retirement, while reduc-
tions in mortality at older ages delay retirement (d’Albis et al., 2012; Strulik and Werner,
2012).2

In this paper, we set up a life-cycle model of consumption and labor supply at
the extensive margin that allows for endogenous human capital formation through the
Ben-Porath’s mechanism. First, we explain the differential role of mortality on the
optimal schooling choice and retirement choice. Second, we use the model to study
whether the observed decline in mortality across cohorts born in US and Sweden can
produce a monotonic increase in schooling followed by a decline in retirement. Our
model has one key feature. Following the literature on human capital formation, indi-
viduals have a relative disutility from attending school, or aversion to schooling time,
like in Heckman et al. (1998), Bils and Klenow (2000), Card (2001), Oreopoulos (2007),
Restuccia and Vandenbroucke (2013). This feature has been shown to be important to
account for the substantial difference between the returns to schooling and the marginal
cost of schooling (Oreopoulos, 2007).3 Our model differs from the previous literature

2Empirical investigations of the mortality decline over the last two centuries show that mortality does
not improve uniformly across age groups (Lee, 1994; Wilmoth and Horiuchi, 1999; Cutler et al., 2006).
Early stages of the mortality transition are mainly characterized by reductions of mortality for infants
and children, while recent mortality declines occur at older ages.

3The empirical work on the returns to education suggests that the aversion to schooling time captures
sizable nonpecuniary effects of schooling. Examples of negative nonpecuniary effects of schooling are high
psychic costs of school and higher risk and uncertainty (Carneiro and Heckman, 2003; Carneiro et al.,
2003; Cunha et al., 2005; Heckman et al., 2006), while suggested positive nonpecuniary effects of com-
pulsory schooling are fostering trust and the reduction of teen fertility, criminal activity, or smoking
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in two aspects. First, we model the labor supply decision at the extensive margin (re-
tirement) rather than at the intensive margin (hours worked). Thus, we complement
the recent work by Restuccia and Vandenbroucke (2013), who have shown that the in-
crease in life expectancy during the last century only counts for 3% of the decline in hours
worked in the US, by empirically showing the effect of life expectancy on retirement. Sec-
ond, since the decline in mortality does not occur uniformly across age-groups, following
d’Albis et al. (2012) we model the age-specific mortality rates non-parametrically. Thus,
using the derivative of a functional (Ryder and Heal, 1973; d’Albis et al., 2012), we ana-
lyze the impact of a mortality decline at any arbitrary age on human capital investment
and retirement.

This paper provides two important contributions. First, we find that when there
exists an aversion to schooling time, an increase in the length of schooling might lead to
a decline in the retirement age. The intuition is as follows. Individuals who are averse
to schooling do not maximize their lifetime income, since they prefer to invest less into
education and therefore anticipate their entrance in the labor market. Thus, under such
a setting, by extending the length of schooling lifetime income rises (income effect), which
is used to increase consumption and leisure (i.e., early retirement age). On the other, by
extending the length of schooling, the increase in the wage rate raises the marginal benefit
of working (substitution effect). The net effect of these two opposite effects depends on the
strength of the income effect relative to the substitution effect. Hence, if the income effect
dominates over the substitution effect, the optimal length of schooling and the optimal
retirement age will be negatively related. Thereby, only when we assume that there
exists aversion to schooling time we can replicate that an increase in life expectancy may
cause an increase in the length schooling and early retirement, reconciling the empirical
facts with the economic theory. Second, using a general utility function we provide
the economic intuition of our results by decomposing the differential effect of mortality
on schooling and retirement into a Ben-Porath mechanism and a lifetime human wealth
effect vs. the years-to-consume effect. The Ben-Porath mechanism is the positive effect
on the marginal benefit of schooling caused by gains in life expectancy. Lifetime human
wealth effect stands for the positive impact that a mortality decline has on consumption
because it raises the likelihood of receiving a future labor income stream. On the contrary,
the years-to-consume effect, which is always negative, reflects the overall reduction in
consumption due to a longer lifespan.

We also perform a quantitative exercise of our model using US and Swedish mortality
data. We restrict the parameters of the model so that it reproduces the years of schooling
and retirement age observed in the data for the cohort born in 1890.4 Then, we compute
cohort-specific sequences of years of schooling and retirement ages assuming that each
cohort faces a different survival probability. Using a stylized model, we find that improve-
ments in the survival probability may account for a decline in the retirement age around
1.2 years (or 40% of the total decline) and an increase in years of education around 1.2
year (or 30%) between the 1890 and 1930 cohorts. Thereby, our results suggest that the

(Oreopoulos and Salvanes, 2011), among others.
4Starting from this cohort guarantees that in both countries individuals received pension benefits

upon retirement from the PAYG pension system. In the United States the Social Security Act was
signed in 1935 by Franklin D. Roosevelt. In Sweden the old-age pension system switched from a fully
funded system that dates back to 1913 to a pay-as-you-go system in 1935 (Palme, 2005). The universal
coverage was achieved in 1946 in Sweden, while more than 60% of workers were covered by the Social
Security in 1940 in the US (Schieber and Shoven, 1999).
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effect of increases in life expectancy on the labor supply is stronger than previously sug-
gested. In addition, since in the earlier stage of mortality transition, a decline in mortality
mainly occurred to younger people, whereas in the later stage, a decline in mortality has
mainly occurred at older ages, we show that the optimal retirement age bottomed out
for cohorts born in the 1920s and it is expected to increase from now on.

The paper is organized as follows: Section 2 introduces the model setup and presents
the first-order conditions for optimal consumption, length of schooling, and retirement.
Furthermore, the relationship between the optimal length of schooling and retirement
is explained. In Section 3, we study –using the Volterra derivative of a functional–
the differential role of mortality on the optimal length of schooling and retirement. In
Section 4, we solve the model numerically and demonstrate, using a simple quantitative
exercise, how the mortality transition may increase the length of schooling and reduce
the retirement age. Concluding remarks are made in Section 5.

2. The model

We setup a consumer’s problem that consists in choosing the optimal number of
years of schooling (S), optimal retirement age (R), and the optimal consumption path
(c(x)) in order to maximize the expected lifetime utility (V (S,R, c)). We assume time is
continuous. Agents face lifetime uncertainty, which is represented by the survival function

p(x) = e−
∫ x
0
μ(q)dq, (1)

where p(x) is the (unconditional) probability of surviving to age x, p(0) = 1, p(ω) = 0,
ω ∈ (0,∞) denotes the maximum age, and μ(q) ≥ 0 is the mortality hazard rate at age
q.

Schooling and labor supply are indivisible and the transitions from schooling to
working and from working to retirement are irreversible, as in Boucekkine et al. (2002),
Echevarria (2004), Echevarria and Iza (2006), and Cai and Lau (2012). We also assume
that agents do not save with a bequest motive in mind and there exists a perfect an-
nuity market, which grants that agents borrow and lend freely at a fixed interest rate.
Thereby, consumers optimally choose to purchase annuities (Yaari, 1965). The instan-
taneous expected utility depends positively on current consumption and negatively on
current non-leisure time. The utility of consumption U(c) is an increasing and concave
function (i.e. Uc(·) > 0, Ucc(·) < 0).5 Let φ̃(S, x) denote the disutility of non-leisure
time at age x of an individual who has completed S years of schooling. Assume φ̃(S, x)
is a positive and increasing function with respect to age (i.e. φ̃(S, x) > 0, φ̃x(S, x) > 0),
which reflects the fact that the disutility of not enjoying leisure is increasing with age
(Hazan, 2009; Kalemli-Ozcan and Weil, 2010; d’Albis et al., 2012; Cai and Lau, 2012).
After retirement, φ̃(S, x) equals zero. Then, assuming that agents discount future utility
flows at a subjective discount rate ρ, the expected lifetime utility, conditional on the years
of schooling (S), retirement (R), and consumption path (c) is

V (S,R, c) =

∫ ω

0

e−ρxp(x)U
(
c(x)

)
dx−

∫ R

0

e−ρxp(x)φ̃(S, x)dx. (2)

5We use subscripts to denote the derivative with respect to the variable in the subscript, and apply
the same notation for partial derivatives.
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Following Heckman et al. (1998), Bils and Klenow (2000), Card (2001), Oreopoulos (2007),
Restuccia and Vandenbroucke (2013), we assume agents may have different preferences
between schooling time and working time

φ̃(S, x) =

{
φ(x) + ψ(x) if x ≤ S,

φ(x) if x > S,
(3)

where φ(x) > 0 (with φx(x) ≥ 0) is the underlying disutility of non-leisure time and ψ(x)
is the relative disutility from attending school or aversion to schooling time. Factor ψ(x) is
positive when the agent prefers work to schooling or negative when schooling is preferred
to work. We assume that if ψ(x) is positive, the aversion to schooling time increases with
age (i.e. ψx(x) ≥ 0), whereas if ψ(x) is negative, our agent has a decreasing preference
for schooling, or ψx(x) ≤ 0. As a particular case, notice ψ(x) = 0 for all x ∈ (0, ω)
is implicitly assumed in Boucekkine et al. (2002), Echevarria (2004), Echevarria and Iza
(2006), Ferreira and Pessoa (2007), Zhang and Zhang (2009), Kalemli-Ozcan and Weil
(2010), and Cai and Lau (2012), among many others.

Labor income, denoted by y, is assumed to be proportional to years of schooling (S).
We write labor income at age x conditional on S years of schooling as y(S, x) = wh(x),
where w > 0 represents the wage rate per unit of human capital and h(x) is the stock of
human capital of an individual at age x with S years of schooling.6 Assume the law of
motion of human capital of an individual at age x with S years of schooling accumulates
according to a Ben-Porath (1967) technology

hx(x) =

{
q(h(x))− δh(x) if x ≤ S

−δh(x) otherwise,
(4)

where q(·) is the human capital production function (with qh(·) > 0 and qhh(·) < 0), and
δ > 0 is the human capital depreciation rate, which is assumed constant across age.7 As
a result, the law of motion of financial wealth at age x (a(x)) is

ax(x) =

{
[r + μ(x)]a(x) + y(S, x)− c(x) if S < x < R,

[r + μ(x)]a(x)− c(x) otherwise,
(5)

with boundary conditions a(0) = 0 and a(ω) = 0, where r is the real interest rate.
Integrating (5) with respect to age, subject to the boundary conditions, we obtain the
standard lifecycle budget constraint faced by our individual:∫ ω

0

e−rxp(x)c(x)dx =

∫ R

S

e−rxp(x)y(S, x)dx ≡W (S,R), (6)

where W (S,R) is the lifecycle earnings (measured at age 0) conditional on S years of
schooling and retirement age R. For the sake of comparison with the literature on the
impact of mortality on retirement and education, notice that we implicitly assume that

6Note that a constant wage rate per unit of human capital can be used without lost of generality. In
AppendixA we show that a sufficient condition for our results to hold is that the wage rate per unit of
human capital must be a non-increasing function upon retirement.

7The functional form h(S) = eθ(S), used by Hazan (2009), p. 1834, can be obtained assuming either
that δ = 0 or that q(h(x)) is equal to (θx(x) + δ)h(x).
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the only pecuniary cost of schooling is foregone labor income (Kalemli-Ozcan et al., 2000;
Hazan, 2009; Cai and Lau, 2012; Cervellati and Sunde, 2013). Tuition costs, earnings
while in school, and taxes are also modeled in the returns to education literature (Willis,
1986; Card, 2001; Heckman et al., 2006).

2.1. Optimal consumption, length of schooling, and retirement age

Following d’Albis and Augeraud-Véron (2008), Heijdra and Romp (2009), and d’Albis et al.
(2012) we obtain our agent’s optimal consumption path, length of schooling, and retire-
ment in two steps. First, we derive the optimal consumption path. We define the optimal
consumption at age x, conditional on the length of schooling (S) and retirement age (R),
as c(x, S, R). Second, based on the conditional consumption path derived in the first
step, we obtain the optimal length of schooling and retirement age. Let us define V̂ (S,R)
as the expected lifetime utility conditional on the optimal consumption path.

In Proposition 1, we characterize the optimal consumption path, the optimal length
of schooling, and the optimal retirement age. The proof is given in AppendixA.

Proposition 1. For the life-cycle model given by (1)-(5), the optimal consumption path,
conditional on a length of schooling S and a retirement age R, is characterized by

Uc
(
c(x, S, R)

)
= e(ρ−r)xUc

(
c(0, S, R)

)
. (7)

Moreover, an interior optimal length of schooling (S∗) satisfies

∫ R

S∗
e−r(x−S

∗) p(x)

p(S∗)
yS(S

∗, x)dx = y(S∗, S∗) +
e(r−ρ)S

∗
ψ(S∗)

Uc
(
c(0, S∗, R)

) , (8)

and an interior optimal retirement age (R∗) is given by

Uc
(
c(0, S, R∗)

)
e−rR

∗
y(S,R∗) = e−ρR

∗
φ(R∗). (9)

Eq. (7) is the standard Euler condition characterizing the consumption path. The
left-hand side of Eq. (8) is the marginal benefit of the S∗-th year of schooling, whereas the
right-hand side represents the marginal cost of the S∗-th year of schooling. The first term
is the foregone earnings, or pecuniary cost of schooling, and the second term represents
the nonpecuniary cost (if ψ(S∗) > 0) or benefit (if ψ(S∗) < 0) from attending schooling.
Let us define f(S,R) as the marginal effect of an additional unit of schooling (measured
at age S) on lifecycle earnings:

f(S,R) ≡ WS(S,R)

e−rSp(S)
=

∫ R

S

e−r(x−S)
p(x)

p(S)
yS(S, x)dx− y(S, S), (10)

or, equivalently, the marginal benefit of the S-th year of schooling minus the foregone
labor income at age S (measured at age S). From (4) Eq. (10) can be rewritten, after
rearranging, as

f(S,R) =
W (S,R)

e−rSp(S)

(
q(h(S))

h(S)
− δ − r −

∫ R
S
e−(r+δ)xμ(x)p(x)dx∫ R
S
e−(r+δ)xp(x)dx

− e−rRp(R)y(S,R)
W (S,R)

)
,

(11)

7



where q(h(S))/h(S) − δ is the rate of return to education at the S-th unit of schooling
(henceforth rh(S)). The third and fourth terms inside the parenthesis represent the
average return lost in the capital market from postponing the entrance in the labor
market. Specifically, the fourth term is the expected mortality premium –at age 0– lost
from the S-th unit of schooling, which hereinafter we denote by μ̄[S,R]. The last term is
the income lost at retirement relative to the lifetime wealth. For notational convenience,
let us denote the sum of the last three negative terms in (11) as r̄(S,R); that is

r̄(S,R) = r + μ̄[S,R] +
e−rRp(R)y(S,R)

W (S,R)
. (12)

Eq. (12) represents the hurdle rate or annuitized marginal cost of the S-th unit of
schooling, expressed in terms of foregone earnings, conditional on the retirement age
R.8 Assuming there is no mortality risk and considering that R tends to infinity, Eq.
(12) reduces to the real interest rate. Thus, if ψ(S∗) is zero, we obtain the result that
individuals invest in schooling until the marginal return to education equals the return
to capital, see Willis (1986).

Substituting (10)-(12) in (8), and rearranging, gives

rh(S∗) = r̄(S∗, R) +
e−ρS

∗
p(S∗)ψ(S∗)

W (S∗, R)Uc(c(0, S∗, R))
. (13)

Eq. (13) implies that the return to education at the S∗-th unit of schooling is equal
to the sum of the marginal cost of the S∗-th unit of schooling expressed in terms of
foregone earnings and the nonpecuniary cost/benefit of schooling. Eq. (13) implies that
when working is preferred to schooling (ψ(S∗) > 0), individuals underinvest in education
since rh(S∗) > r̄(S∗, R). In contrast, when schooling is preferred to work (ψ(S∗) < 0),
individuals over-investment in education since rh(S∗) < r̄(S∗, R). As a consequence, if
education were considered a pure investment good (ψ(S∗) = 0), rh(S∗) = r̄(S∗, R∗).

Empirically, the econometric estimations of returns to education report values of
rh(S∗) exceeding those of r̄(S∗, R∗). For example, Card (1999) finds a wide range of rates
of returns to education in the US centered around 8% per year, while Heckman et al.
(2008) estimate also for the US that the returns to education range between 10 to 15%
per year. In contrast, when education is considered a pure investment good, the rate
of return to education for an individual with 10 years of education does not exceed 3%
per year for a wide range of feasible retirement ages.9 Several explanations are suggested
in the literature for the positive difference between rh(S∗) and r̄(S∗, R∗). The most
common ones are high “psychic cost” of school, uncertainty, and heterogeneity among
individuals (Carneiro et al., 2003; Cunha et al., 2005; Heckman et al., 2006), the myopic
behavior of adolescents (Oreopoulos, 2007), while credit constraints might be impor-
tant for going to college decisions (Belley and Lochner, 2007), but not for most students
(Carneiro and Heckman, 2002; Heckman et al., 2006). Henceforth, following the litera-
ture on returns to education, we assume hereinafter that ψ(x) > 0 for all x ∈ (0, S). As
a consequence, rh(S∗) > r̄(S∗, R).

8The hurdle rate is: the minimum return required to make an individual financially better off from
taking one year of school instead of one year of work (Oreopoulos, 2007).

9A value of 3% has been calculated based on the wage rate per unit of human capital logw(x− S) =
logw(0) + 0.094(x − S) − 0.0013(x− S)2 withdrawn from Table 2 (Heckman et al., 2006, p. 326), US
death rates of males from the cohort born in year 1900 (Bell et al., 1992), an interest rate of 3%, and no
human capital depreciation rate.
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Eq. (9) is the optimal retirement age condition. Eq. (9) implies that the marginal
benefit of continued working at age R∗, which is equivalent to the additional labor income
at age R∗ measured in utility terms, equals the marginal cost of working at age R∗, or
the disutility of continued working at age R∗. This optimal retirement age condition was
first derived by Sheshinski (1978).

The first important results one can obtain from Proposition 1 are the effects of an
increase in the optimal length of schooling and retirement age on the optimal consumption
path. Differentiating (6) and (7) with respect to S, substituting, and using (10) gives

cS(0, S
∗, R)

c(0, S∗, R)
=

e−rS
∗
p(S∗)σ(c(0, S∗, R))f(S∗, R)∫ ω

0
e−rxp(x)σ(c(x, S∗, R))c(x, S∗, R)dx

. (14)

where

σ(c) = − Uc(c)

c · Ucc(c) > 0, (15)

is the intertemporal elasticity of substitution (IES) for consumption c. Using (6) and
(11)-(13), Eq. (14) becomes10

cS(0, S
∗, R)

c(0, S∗, R)
=
σ(c(0, S∗, R))
σ(c(x̄, S∗, R))

(rh(S∗)− r̄(S∗, R)), (17)

Assuming a constant IES, Eq. (17) implies that the relative increase in the initial con-
sumption due to an additional unit of schooling is equal to the difference between the
return to education and the marginal cost of the S∗-th unit of schooling expressed in
terms of foregone earnings. As a consequence, an additional investment in schooling is
efficient when rh(S∗) > r̄(S∗, R), and inefficient when rh(S∗) < r̄(S∗, R).

To analyze the impact of retirement on the optimal consumption path we differentiate
(6) and (7) with respect to R. Substituting and using (9), we have

cR(0, S, R
∗)

c(0, S, R∗)
=

e−rR
∗
p(R∗)σ(c(0, S, R∗))y(S,R∗)∫ ω

0
e−rxp(x)σ(c(x, S, R∗))c(x, S, R∗)dx

, (18)

which is equivalent to

cR(0, S, R
∗)

c(0, S, R∗)
=
σ(c(0, S, R∗))
σ(c(x̄, S, R∗))

e−rR
∗
p(R∗)y(S,R∗)
W (S,R∗)

. (19)

For a constant IES, Eq. (19) states that the relative impact of delaying retirement on the
initial consumption is equal to the weight of labor income at age R∗ in lifecycle earnings.
Thereby, contrary to an increase in the length of schooling, an increase in the retirement
age always raises the optimal consumption path because the agent receives an additional
labor income at age R∗.

10Applying the mean value theorem for integration, there exists an x̄ ∈ (0, ω) such that

∫ ω

0

e−rxp(x)σ(c(x, S∗, R))c(x, S∗, R)dx

= σ(c(x̄, S∗, R))
∫ ω

0

e−rxp(x)c(x, S∗, R)dx = σ(c(x̄, S∗, R))W (S∗, R). (16)
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2.2. Relationship between years of schooling and retirement

In the previous subsection we have shown the first-order conditions for an optimum
of S∗ and R∗, separately, and how they impact on the optimal consumption path. In this
subsection, we turn to a detailed study about the relationship between the optimal years
of schooling and the optimal retirement age.

Let us denote c(0, S∗, R∗) as c∗ and c(x̄, S∗, R∗) as c̄. Applying the implicit-function
theorem to the first order condition for S∗ around the point (S∗, R∗), we can examine
the impact on the optimal length of schooling of a change in the retirement age. To-
tally differentiating (8) with respect to R and S, taking ψ(S∗) as common factor, and
rearranging, we obtain

dS∗

dR

∣∣∣∣
R=R∗

=

fR(S∗,R∗)
f(S∗,R∗) − 1

σ(c∗)
c∗R
c∗

ψS(S∗)
ψ(S∗) + 1

σ(c∗)
c∗S
c∗ − fS(S∗,R∗)

f(S∗,R∗)

. (20)

Similarly, applying the implicit-function theorem, we totally differentiate (9) with respect
to S and R to examine the impact on the optimal retirement age of a change in the length
of schooling

dR∗

dS

∣∣∣∣
S=S∗

=
− 1
σ(c∗)

c∗S
c∗ + rh(S∗) + δ

1
σ(c∗)

c∗R
c∗ + δ + φR(R∗)

φ(R∗)

. (21)

Provided (S∗, R∗) is an interior solution of our problem, substituting (10) and (19) in
(20)-(21), and using (12), we have11

sign

[
dS∗

dR∗

]
= sign

[
r̄(S∗, R∗) + σ(c̄)δ

1− σ(c̄)
− rh(S∗)

]
, (22)

Eq. (22) implies that the length of schooling S∗ and the retirement age R∗ may be either
positively or negatively related. On the one hand, looking at Eq. (21), we have that an
additional year of schooling after age S∗ increases the labor income at age R∗ by rh(S∗)+
δ, which increases the marginal benefit of working. As a consequence, our individual
optimally postpones the retirement age in order to reap the benefits of schooling. On the
other hand, the increase in education may also change the marginal utility of consumption,
and hence the marginal benefit of working, by − 1

σ(c∗)
c∗S
c∗ .

12 Thus, the net effect of a change
in education on retirement depends upon the strength of the income effect, reflected by
the IES (İmrohoroğlu and Kitao, 2009; Keane, 2011), and the difference between rh(S∗)
and r̄(S∗, R∗). At the extreme cases, when σ(c̄) tends to one or r̄(S∗, R∗) = rh(S∗), we
have that the sign of dS∗

dR

∣∣
R=R∗ and dR∗

dS

∣∣
S=S∗ depend on the sign of r̄(S∗, R∗) + δ, which

is always positive.
Figure 2 summarizes the result obtained in Eq. (22). For any given wage rate per unit

of human capital, Figure 2 is divided into two shaded areas. A dark gray area that con-
tains the combination of (rh(S∗), σ(c̄)) values for which S∗ and R∗ are positively related,

11From now on, we use the term dS∗/dR∗ as a shorthand notation for dS∗
dR

∣∣∣
R=R∗

/
dR∗
dS

∣∣∣
S=S∗

.
12Differentiating (7) with respect to S, we have

1

σ(c∗)
c∗S
c∗

=
1

σ(c(x, S∗, R∗))
cS(x, S

∗, R∗)
c(x, S∗, R∗)

for all x ∈ [0, ω).
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Return to

education,

r
h(S∗)

r̄(S∗
,R

∗)

IES, σ(c̄)0 1

dS
∗

dR∗
< 0

dS
∗

dR∗
> 0

r̄(S∗,R∗)+σ(c̄)δ
1−σ(c̄)

Figure 2: Relationship between S∗ and R∗ by return to education and intertemporal elasticity of sub-
stitution

and a light gray area with the combination of (rh(S∗), σ(c̄)) values for which S∗ and R∗

are negatively related. It is clear looking at Figure 2 that S∗ and R∗ are positively related
whenever the return to education is equal to, or lower than, r̄(S∗, R∗) (dark gray area
below the horizontal dotted line in Figure 2). In this region, an increase in the retirement
age leads to an increase in the optimal length of schooling (Ben-Porath, 1967), as well
as an increase in schooling yields an increase in the retirement age (Boucekkine et al.,
2002; Echevarria and Iza, 2006). However, when the return to education is higher than
r̄(S∗, R∗), S∗ and R∗ can either be positively or negatively related. The black dashed
line in Figure 2 delimits the combination of (rh(S∗), σ(c̄)) values at which S∗ and R∗ are
not related to each other; i.e. dS∗

dR∗ = 0. The light gray area, located at the upper-left
corner, is characterized by low IES and high return to education. In this area, the income
effect dominates. Thus, for a sufficiently high return to education and low IES, when a
positive income shock increases the optimal years of schooling, the optimal retirement age
decreases, since individuals purchase more leisure time, and the positive effect on years of
schooling gets reinforced. The same effect would take place if the positive income shock
initially reduces the retirement age. Notice, however, the negative relation between S∗

and R∗ vanishes as the return to education approaches the dashed line, which eventually
occurs when the length of schooling is sufficiently large. On the contrary, in the dark gray
area, where the strength of the income effect diminishes –as a consequence of a positive
income shock that raises the retirement age– the optimal years of schooling increases and
the rise in the retirement age gets also reinforced.
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3. Differential impact of mortality decline on optimal schooling years and
retirement age

In this Section, we study the impact of a mortality decline at an arbitrary age (x0)
on the optimal length of schooling (S∗) and the optimal retirement age (R∗). For clarity
of exposition, we make explicit the dependence of the optimal schooling and retirement
age on each other and on the underlying mortality schedule; i.e. S∗ ≡ S∗(R∗;μ) and
R∗ ≡ R∗(S∗;μ).13

Eqs. (23a)-(23b) below show how the effect of a mortality decline at an arbitrary age
x0 is characterized by the sum of two partial effects:

sign

[ −dS∗

dμ(x0)

]
= − sign

[
S∗
μ(x0)(R

∗;μ) +
dS∗

dR∗R
∗
μ(x0)(S

∗;μ)
]
, (23a)

sign

[ −dR∗

dμ(x0)

]
= − sign

[
R∗
μ(x0)

(S∗;μ) +
dR∗

dS∗S
∗
μ(x0)

(R∗;μ)
]
. (23b)

See the proof in AppendixC. The first partial effect is the impact of a mortality decline at
x0 on S∗ and R∗ –respectively– holding all other variables unchanged, while the second
partial effect is the impact of retirement (resp. schooling) on schooling (resp. retirement)
that is mediated by a change in mortality. Thus, as shown in (23a) and (23b), the effect
of mortality on S∗ and R∗ are intertwined.

Combining the partial effects, presented in AppendixB, according to Eqs. (23a) and
(23b), Proposition 2 gives under the strict concavity of the expected lifetime utility, the
sign of a decline in mortality at an arbitrary age x0 on the optimal length of schooling
and retirement age. See AppendixC for the proof.

Proposition 2. Assuming the strict concavity of V̂ (S,R), for the life-cycle model given
by (1)-(5),

(a) the sign of −dS∗
dμ(x0)

is the same as that of

{
a(x0)

1
σ(c∗)

1
c∗

dc∗
dS∗ +

∫ R∗

x0
e−r(x−x0) p(x)

p(x0)
yS(S

∗, x)dx if S∗ < x0 < R∗,

a(x0)
1

σ(c∗)
1
c∗

dc∗
dS∗ otherwise,

(24)

(b) and the sign of −dR∗
dμ(x0)

is the same as that of

{
a(x0)

1
σ(c∗)

1
c∗

dc∗
dR∗ + dS∗

dR∗
∫ R∗

x0
e−r(x−x0) p(x)

p(x0)
yS(S

∗, x)dx if S∗ < x0 < R∗,

a(x0)
1

σ(c∗)
1
c∗

dc∗
dR∗ otherwise.

(25)

First, Eq. (24) shows that the total impact of a decline in mortality at an arbitrary age
x0 on the optimal length of schooling is given by three factors: (i) the “lifetime human
wealth” effect versus the “years-to-consume” effect, which is reflected by the financial
wealth at age x0, i.e. a(x0); (ii) the total impact of years of schooling on the initial
consumption; and (iii) the effect of mortality on the marginal benefit of schooling or Ben-
Porath mechanism. Factors (i) and (ii) only have an impact when rh(S∗) �= r̄(S∗, R∗).

13Let the continuous function μ : [0, ω) → R+, x0 	→ μ(x0) represents the mortality hazard rate at any
age x0 ∈ [0, ω).
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Second, Eq. (25) shows that the total impact of a decline in mortality at an arbitrary
age x0 on the optimal retirement age is also given by another three factors: (i) the
“lifetime human wealth” effect versus the “years-to-consume” effect; (ii) the total impact
of retirement on the initial consumption; and (iii) a Modified Ben-Porath mechanism.
Notice in the last term of Eq. (25) that the Ben-Porath mechanism is modified by the
relationship between S∗ andR∗; i.e., dS

∗
dR∗ . Thus, if S

∗ and R∗ are negatively related, agents
anticipate their retirement age and enjoy more leisure time when a decline in mortality
causes an increase in the marginal benefit of schooling. In contrast, if S∗ and R∗ are
positively related, agents postpone their retirement age in order to reap the benefits of
schooling. This is because in the former alternative the income effect dominates over
the substitution effect, whereas in the latter the substitution effect dominates over the
income effect.

During the schooling period and the retirement period, the effect of mortality on the
marginal benefit of schooling is null. Thereby, in these two periods, the sign of the total
impact of a decline in mortality on the optimal length of schooling and retirement age
solely depend on the lifetime human wealth effect versus the years-to-consume effect and
the total impact of years of schooling and retirement on the initial consumption:

sign

[ −dS∗

dμ(x0)

]
= sign

[
a(x0)

1

σ(c∗)
1

c∗
dc∗

dS∗

]
,

sign

[ −dR∗

dμ(x0)

]
= sign

[
a(x0)

1

σ(c∗)
1

c∗
dc∗

dR∗

]
,

for all x0 ∈ [0, S∗] ∩ [R∗, ω]. On the one side, from (5) we know that a(x0) < 0 during
the schooling period, while a(x0) > 0 during the retirement period. On the other side,
combining (17), (19)-(21) we have

1

σ(c∗)
1

c∗
dc∗

dS∗ = (1− λR)
rh(S∗)− r̄(S∗, R∗)

σ(c̄)
+ λR

(
rh(S∗) + δ

)
, (26)

where

λR =
1

σ(c∗)
c∗R
c∗

/(
1

σ(c∗)
c∗R
c∗

+ δ +
φR(R

∗)
φ(R∗)

)
. (27)

Since λR takes values between zero and one, assuming rh(S∗) − r̄(S∗, R∗) > 0, it is
straightforward to show that (26) is always positive. Therefore, like Cai and Lau (2012) a
decline in mortality during the schooling period has a negative impact on education, while
a decline in mortality during the retirement period has a positive impact on education.
On the contrary, the total impact on the initial consumption of an increase in the optimal
retirement age is a priori ambiguous. In particular, it can be shown

1

σ(c∗)
1

c∗
dc∗

dR∗

{
≥ 0 ⇔ dS∗

dR∗ ≥ − c∗R
c∗S
,

≤ 0 ⇔ dS∗
dR∗ ≤ − c∗R

c∗S
.

(28)

Consequently, according to (22), the total impact of a decline in mortality –during the
schooling and retirement periods– on the optimal retirement age coincides with that on
the length of schooling if, and only if, the relationship between the optimal years of
education and retirement age is positive; otherwise, when dS∗

dR∗ < 0, both alternatives are
possible.
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The direct consequence of this ambiguity is that the impact of a reduction of μ(x0)
on R∗ − S∗ is in general ambiguous. In the next section we perform a simple numerical
analysis using observed mortality data in order to show the impact of μ(x0) on R

∗ − S∗

under different scenarios.

4. Quantitative exercise

In this Section we study numerically the impact of the epidemiological transition on
the optimal years of schooling and retirement age when both variables are endogenous.
We thus abstract from the effect that a pension system or any policy reform may have
on our decision variables. This is a strong simplification but it allows us to focus on the
main point of the article: the effect of mortality declines on education and retirement.

For comparability with the existing literature, our quantitative exercise exploits the
data used by Hazan (2009). Moreover, we extend the analysis by using death rates of
Swedish males born between 1890 and 2000 in order to see the effect that an alternative
observed mortality pattern may have on labor supply. Our analysis delivers two important
results. First, when the life expectancy rises, our model is capable of producing a decline
in the optimal retirement age and an increase in years of schooling. Second, since in
the earlier stage of mortality transition, a decline in mortality belongs mainly to younger
people, whereas in the later stage, a decline in mortality decline has mainly occurred at
older ages, we show that the optimal retirement age stops declining after the cohort born
in year 1920 and increases thereafter.

4.1. Data

To estimate the marginal effect of the decline in mortality on the length of schooling
and retirement age, we just need data on mortality rates. Nevertheless, to realistically
match the effective retirement age and years of schooling for the cohort born in 1890
(our baseline cohort), we also collect data on labor force participation rates and years of
schooling for Swedish males and US males.

4.1.1. Retirement and years of schooling data

The effective retirement age for Swedish males is based on employment rates, taken
from census data, for the period 1910-1985 and labor force surveys for the period 1975-
2004 published by Statistics Sweden.14 Years of schooling for birth cohorts born in Sweden
is calculated based on the number of students by educational attainment reported by
de la Croix et al. (2008).15 US data on labor force participation rates and on years of
schooling for cohorts born between 1890 and 1930 are taken from Hazan (2009).

4.1.2. Mortality data

We combine the data reported by Haines (1998) and Bell et al. (1992) to produce
the probability of dying at each age for US males born between 1890 and 2000. Notice,

14Employed and working age population in Sweden during the period 1910-1985 is available at
http://www.scb.se/tidsseriehafteforvarvsarbetandefob1910-1985. Before the 1980s, unemploy-
ment rates above age 45 were roughly constant and lower than 2 percent (Ljungqvist and Sargent, 1995;
Holmlund, 2009). Therefore, we do not expect a significant error by combining both datasets.

15Information on number of students and enrollment rates by educa-
tional attainment in Sweden from year 1768 to 2002 are withdrawn from
http://perso.uclouvain.de/david.delacroix/data/swedish-educ-data.pdf.
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though, that US mortality data for cohorts born before 1933 are not based on complete
death registrations and census data.16 The probability of dying at each age for Swedish
males born between 1890 and 1911 is taken from Human Mortality Database (2013).
Deaths rates for cohorts born after year 1911 are constructed applying the Lee-Carter
model (Lee and Carter, 1992).17
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Figure 3: Conditional survival probability at age 6 across cohorts: US and Sweden, Male cohorts 1890–
2000.

Note: Survival probabilities for cohorts born after 1920 is based on forecasted data.

Figure 3 presents the cohort survival probabilities conditional on reaching age 6 for
males born in 1890, 1920, and 2000 in (a) US and (b) Sweden. Both panels show the
progressive increase in the conditional survival probability for younger cohorts in US and
Sweden. This pattern implies that the life expectancy from age 6 of US males (i.e. the
area below the survival probability curve) is expected to increase from 56.9 years for the
cohort born in 1890 to 72.8 years for the cohort born in 2000.18 In Sweden, the expected
increase in life expectancy at age 6 is greater than that of US, rising from 59.7 years
for Swedish males born in year 1890 to 80.9 for those born in 2000. Therefore, the life
expectancy gap between both countries is expected to increase from 2.8 for cohorts born
in 1890 to 8.1 years for cohorts born in 2000.

Figure 4 shows the contribution of the mortality decline by stage of life on the increase
in life expectancy across males born in US and Sweden from 1890 to 2000. We distinguish

16Death rates based on complete death registrations and census data for cohorts born before year
1900 are only available for a small set of countries: Belgium, Denmark, Finland, France, Iceland, Italy,
Netherlands, Sweden and Switzerland. The same standards of quality for the US demographic data start
in 1933. This information can be drawn from the Human Mortality Database.

17Future age-specific death rates from year 2011 are projected applying the Lee-Carter method to
actual Swedish period-death rates from year 1945 up to 2011. Thus, it is assumed that the log of the
death rate is explained by the following multiplicative process:

logmτ,x = ax + kτ bx + εt,x,where ετ,x is i.i.d.(0, σε),

where mτ,x is the death rate at age x in year τ , ax, bx are age-specific constants, and kτ is a time-varying
index obtained through the singular-value decomposition of a matrix of death rates.

18Life expectancy at age 6 is calculated as: et(6) =
∫ ω

6
pt(s)
pt(6)

ds, where t denotes the birth cohort.
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three periods: schooling from ages 6 to 15 (green area), working period from ages 16 to
65 (blue area), and retirement for ages above 65 (red area). The sum of the three areas
gives the total increase in life expectancy for each cohort from 1890 to 2000 compared to
cohort born in 1890.
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Figure 4: Decomposition of the increase in life expectancy –at age 6– since cohort 1890 by stage of life:
US and Sweden, Male cohorts 1890–2000.

Note: Authors’ calculations based on the decomposition of life expectancy proposed by Arriaga (1984).

According to Figure 4, most years-gained occur during (prime) working ages for the
oldest cohorts. Specifically, five additional years were gained, on average, in both coun-
tries at (prime) working ages between the cohort born in 1890 and that in 1920, while
the total contribution of the mortality reduction during the schooling period and the
retirement period was slightly above two years of age. Between the cohort born in 1920
and that in year 2000 a further increase of 5.8 and 7.5 years at (prime) working ages
is expected in the US and Sweden, respectively. Hence, as it is shown in Figure 4, the
increasing life expectancy gap between both countries for younger cohorts is mainly due
to the faster increase in Sweden compared to that in the US in the life expectancy at age
65. In particular, Swedish males born in 2000 are expected to gain at least three more
years of age than their counterparts in US.

In the next section we perform a numerical simulation to show the consequences of
the different mortality transition on the optimal length of schooling and retirement age.

4.2. Numerical simulation

To solve the model, we follow Cervellati and Sunde (2013) and consider a constant
intertemporal elasticity of substitution (CIES) utility function,

U(c) =
c1−

1
σ − 1

1− 1
σ

, with σ ∈ (0, 1]. (29)

The underlying disutility of non-leisure time is assumed constant φ(x) = φ. For simplicity,
we assume a constant aversion to schooling time, ψ(x) = ψ, for all x ∈ (0, S). Since our
individual devotes her full time to education while she is in school, we use the following
simplified version of the Ben-Porath human capital production function

q
(
h(x)

)
= ξh(x)γ, with ξ > 0 and γ ∈ (0, 1), (30)
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where ξ is a scaling factor and γ is the returns to scale in human capital investment.
Similar to Hazan (2009) and Cervellati and Sunde (2013) the wage rate is assumed to be
constant.

To shed light on the effects of mortality on S∗ and R∗, we introduce further simplifying
assumptions. We assume zero discounting, r = δ = ρ = 0, so that the inverse of r̄(S∗, R∗)
coincides with the expected lifetime labor supply (ELW)19

r̄(S∗, R∗) =
[∫ R∗

S∗

p(x)

p(S∗)
dx

]−1

. (32)

Integrating (4) and using (30) the return to education at age S becomes

rh(S∗) = ξ/ (h(0) + (1− γ)ξS∗) . (33)

As in Cervellati and Sunde (2013), we set γ = 0.65, σ = 0.5, the wage rate per unit of
human capital to one, and fix h(0) = 1. In order to show the importance on the results of
the relationship between S∗ and R∗, we run three alternative simulations combining three
different returns to education function. In particular, we set ξ to 1, .25, and 0.075 so as to
have a return to education after 13 years in school around 18%, 11.5% (Heckman et al.,
2008), and 5.5%.20 Finally, to isolate the effect of the decline in mortality, we restrict the
parameters of the model so that it reproduces the years of schooling and retirement age
observed in the data for the cohort born in 1890 in the United States. Table 1 reports
the values of φ and ψ for US and Sweden, which are calculated so as to have an initial
optimal length of schooling of 9.3 years and an optimal retirement age of 66.7 years for
males born in 1890 (Hazan, 2009).

Table 1: Values of φ and ψ

CIES Human capital Underlying Aversion to Ratio
scaling factor disutility schooling

of leisure time
σ ξ φ ψ ψ/φ

US SWE US SWE US SWE

0.50 1.000 0.03 0.03 0.27 0.29 9.0 9.3
0.50 0.250 0.34 0.36 1.67 1.82 4.9 5.0
0.50 0.075 1.01 1.07 1.59 1.75 1.6 1.6

† Note: US and SWE stand for United States of America and Sweden, respectively.

19Under the assumptions zero discounting and constant wage rate, the annuitized marginal cost of the
S-th unit of schooling becomes

r̄(S∗, R∗) =

∫ R∗

S∗ μ(x)p(x)dx∫ R∗

S∗ p(x)dx
+

p(R∗)∫ R∗

S∗ p(x)dx
. (31)

Since it follows from (1) that −dp(x) = μ(x)p(x)dx, substituting it in (31), and rearranging, gives Eq.
(32).

20Notice that when h(0) = 1, ξ is equal to the initial return to education rh(0).
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4.3. Results

We divide this Section in three parts. First, we study the effect of the aversion to
schooling time assumption for modeling the impact of mortality on total years worked.
Second, we analyze the differential effect of mortality declines at different stages of life
on the optimal years of schooling and optimal retirement age. Finally, we estimate quan-
titatively the importance of the aversion to schooling time for explaining the evolution
of the years worked.

4.3.1. The importance of the aversion to schooling time assumption

To show the impact of mortality on the labor supply for different relationship between
S∗ and R∗, we compute for each country three simulations that results from three different
human capital scaling factors. The parameters of the model are held constant across
cohorts and fixed at the values that reproduce the years of schooling and retirement age
observed in the data for the cohort born in 1890 in the United States. Hence, in each
controlled experiment, any variation in S∗ and R∗ across cohorts is solely due to changes
in mortality.

Table 2: Absolute change in years of schooling and retirement age between 1890 and
1930

Observed Simulated
Human capital scaling factor ξ 1.000 0.250 0.075
Aversion to schooling time ratio ψ/φ 9.0 4.9 1.6

I II III

US Survival
Retirement R∗

1930 −R∗
1890 -2.88 -1.80 -1.17 0.92

Schooling S∗
1930 − S∗

1890 3.93 0.68 1.17 2.72
Years worked† -6.81 -2.48 -2.34 -1.80

Swedish Survival
Retirement R∗

1930 −R∗
1890 -2.73 -1.68 -1.09 0.83

Schooling S∗
1930 − S∗

1890 3.93 0.69 1.19 2.76
Years worked† -6.66 -2.38 -2.28 -1.93

† Note: Years worked is calculated as the difference between the optimal retirement age and the optimal

length of schooling.

Table 2 reports the absolute change in S∗ and R∗ for cohorts born between year 1890
and 1930 using US and Swedish survival probabilities. The first important result from
Table 2 is that the model is capable of predicting that a decline in mortality leads to an
increase in schooling followed by a decline in the retirement age. The extent to which the
optimal retirement age decreases and the optimal length of schooling increases depends
on the ratio ψ/φ, or equivalently ξ. Higher (lower) values of ψ/φ yield a stronger (weaker)
decline in the optimal retirement age and a smaller (higher) increase in the optimal years
of schooling. For instance, if ξ = 1 or ψ/φ = 9.0 (column I), the decline in mortality would
account for 62.6% (-1.80/-2.88) and 61.6% (-1.68/-2.73) of the decline in the retirement
age, while it would account for 17.5% (0.68/3.93) and 17.5% (0.69/3.93) of the increase
in years of schooling in the US and Sweden, respectively. Instead, if we assume ξ = 0.25
or ψ/φ = 4.9 (column II), the model predicts that the decline in mortality would account
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for 40.7% (-1.17/-2.88) and 40.0% (-1.09/-2.73) of the decline in the retirement age,
whereas it would account for 29.7% (1.17/3.93) and 30.2% (1.19/3.93) of the increase
in the years of schooling in the US and Sweden, respectively. The second result is that
the optimal years worked, or the difference between the retirement age and the years
of schooling, are negatively related to the value of ψ/φ. According to Proposition 2,
this is because the decline in mortality only affects positively on the optimal years of
schooling, while it can have a negative or a positive effect on the optimal retirement
age. As explained in Section 3, this result is due to the negative relationship between
S∗ and R∗ or, equivalently, because the income effect dominates over the substitution
effect. Under the assumptions of zero discounting and a constant wage rate, the sign of
the relation between S∗ and R∗, or Eq. (22), is given by

sign

[
dS∗

dR∗

]
= sign

[
1

(1− σ)(1 + ψ/φ)
− 1

]{
< 0 if ψ

φ
> σ

1−σ ,

> 0 otherwise .
(34)

Hence, for σ = 0.50, a value of ψ/φ higher (lower) than one implies a negative (positive)
relationship between S∗ and R∗. Note therefore that the condition dS∗/dR∗ < 0, although
necessary, is not sufficient to guarantee that a decline in mortality yields earlier retirement.
For instance, according to (34), in all simulations the sign of dS∗/dR∗ is negative, while
the model only predicts an early retirement age in columns I and II. The increase in
the retirement age shown in column III is therefore explained by the weak negative
relationship between S∗ and R∗ that results from an aversion to schooling time value of
1.6. In the next subsection, Figures 5 and 6 give further intuitions about the effect of the
weak negative relationship between S∗ and R∗ for the impact of mortality on the years
worked.

4.3.2. Contribution of mortality at different stages of life

We complement the empirical analysis by showing the contribution of mortality im-
provements at different stages of life on the optimal years of schooling and optimal retire-
ment age for our two alternative mortality schedules: males born in US and Sweden. In
these simulations, we divide the lifespan in three periods: childhood (ages 6-15), adult-
hood (ages 16-65), and retirement (ages 65+), which are closely related to the stages of
life delimited by the observed length of schooling and retirement age. In order to show
the contribution of mortality improvements at each stage of life, we calculate the opti-
mal schooling and retirement considering exclusively the gains in survival during either
childhood, or adulthood, or retirement across cohorts ceteris paribus the probability of
dying in the other stages of life. We recalculate the survival probability to age x based
on the new probability of dying in each age interval.
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Figure 5: Contribution of mortality decline by stage of life on (a) the optimal length of schooling and (b) the optimal retirement age across cohorts by average
return to education, US mortality of males born in 1890–2000

Note: Results for cohorts born after 1930 are based on forecasted mortality rates.
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Figure 6: Contribution of mortality decline by stage of life on (a) the optimal length of schooling and (b) the optimal retirement age across cohorts by average
return to education, Swedish mortality of males born in 1890–2000

Note: Results for cohorts born after 1930 are based on forecasted mortality rates.
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Figures 5 and 6 show how mortality improvements during childhood (circled blue
arrows), adulthood (squared green arrows), and retirement (red-diamond arrows) affect
on the optimal years of schooling and the retirement age by different functional form
of the returns to education. The height of each arrow represents the change from the
baseline (solid gray line) in the endogenous variable, while the position of the marker
represents the direction of the effect. The evolution of the optimal length of schooling
and optimal retirement age –represented by the dashed black line– equals the sum of
the heights of the three arrows. Note that the difference between the top and bottom
panels for each human capital scaling factor ξ gives the total number of years worked,
conditional on reaching the retirement age.

The bottom panels in Figures 5 and 6 show how mortality improvements raise the
optimal years of schooling. According to Proposition 2, a decline in mortality during
adulthood raises the marginal benefit of schooling and hence the optimal length of school-
ing, because the likelihood of receiving a future labor earning increases, also known as
the Ben-Porath’s mechanism. A decline in mortality during retirement also leads to an
increase in the length of schooling, because agents continue studying in order to finance
the consumption after retirement through an increase in lifetime earnings. That is, the
years-to-consume effect dominates over the lifetime human wealth effect. The contribu-
tion of mortality improvements during childhood on the optimal length of schooling is
negative but negligible. The sum of these three effects of mortality on the optimal length
of schooling is represented by the black dashed line.

The panels at the top in Figures 5 and 6 show how mortality improvements change
the optimal retirement age. The parameter values assumed in both Figures imply that
the income effect dominates over the substitution effect. As a consequence, the relation-
ship between S∗ and R∗ is negative, or dS∗

dR∗ < 0. Thus, a decline in mortality during
adulthood leads to early retirement (see the second term in Eq. 25). Individuals use the
additional income to increase consumption and enjoy more leisure time. Note, however,
that the strength of the negative effect decreases (see the length of the green arrows) with
lower returns to education. This is because the negative relation between education and
retirement vanishes when rh(S∗) tends to r̄(S∗, R∗) (see Figure 2). Consequently, if the
relation between S∗ and R∗ were positive, a decline in mortality during adulthood would
lead to a delay in the retirement age. On the other hand, mortality declines late in life
leads to a delay in the optimal retirement age because individuals need more earnings
to finance the additional consumption due to a longer retirement period. This positive
effect on retirement is indicated by the upward green squared arrow. Similar to the effect
on the length of schooling, the contribution of mortality improvements during childhood
on the optimal retirement age is also negative but negligible. The net effect of mortality
improvements at different stages of life on the optimal retirement age is represented by
the black dashed line. Notice that in all cases we observe a turning point in the evolution
of the optimal retirement age after the cohorts born in the 1920s. This is because mor-
tality improvements for cohorts born before the 1920s mainly occurred during childhood
and adulthood, whereas the improvements in mortality for more recent cohorts mainly
occur at older ages.

4.3.3. Aversion to schooling time values

To assess how reasonable our aversion to schooling time assumption is, we compute
the nonpecuniary cost of schooling that results from our theoretical model and compare
it to the values derived in the literature. To do so, we pin down the values of φ and ψ
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that corresponds to the observed length of schooling (Ŝt) and retirement age (R̂t) across
cohorts and human capital scaling factors.

Assuming a flat wage rate and no discounting, from Eq. (13) the returns to schooling
at the optimal schooling decision must satisfy

rh(S∗) = r̄(S∗, R∗) [1 + (ψ/φ)] , (35)

where the ratio (ψ/φ) gives information about the importance of the nonpecuniary cost
of schooling for the optimal schooling decision. Thus, provided the values of (Ŝt, R̂t) and
pt(x), from (35) we can calculate the evolution of this ratio as

̂(ψ/φ)t =
rh(Ŝt)

r̄(Ŝt, R̂t)
− 1. (36)

From Eq. (32) we know that the marginal cost of the Ŝt-th unit of schooling (i.e. r̄(Ŝ, R̂))
is, by definition, the inverse of the expected lifetime labor supply (ELW ). Column III
in Table 3 shows that the expected lifetime labor supply has slightly decreased from 42.7
years to 41.3 between cohort 1890 and 1930. Thus, our assumed marginal cost of the
Ŝt-th unit of schooling, or hurdle rate, is close to 2.4% –column IV in Table 3–. A value of
2.4% is between 1.2% and 2.6% estimated for the US; see Table 5 in Oreopoulos (2007).21

Table 3: Observed average length of schooling (Ŝ), average retirement

age (R̂), expected lifetime labor supply (ELW ), and three hypothetical
returns to schooling in the US

Cohort Ŝ + 6 R̂ ELW † r̄(Ŝ, R̂) rh(Ŝ)
ξ =1.00 ξ =.250 ξ =.075

I II III IV=1/III V VI VII

1890 15.3 66.7 42.7 2.3% 23.4% 13.8% 6.0%
1900 17.0 66.3 42.0 2.4% 20.6% 12.7% 5.8%
1910 17.8 64.8 41.7 2.4% 19.5% 12.3% 5.7%
1920 18.5 63.9 41.5 2.4% 18.7% 12.0% 5.7%
1930 19.3 63.8 41.3 2.4% 17.7% 11.6% 5.6%

† Note: The expected lifetime labor supply (ELW) is defined as
∫ R̂t

Ŝt

pt(x)

pt(Ŝt)
dx, where pt(x)

is the probability of surviving to age x conditional on reaching age 6 for the cohort born

in year t.

Using our estimated hurdle rate, Figure 7 shows the evolution of the ratio ̂(ψ/φ)t that

corresponds to the observed length of schooling (Ŝt) and retirement age (R̂t) in the US

across cohorts for different human capital scaling factors. We obtain that the ratio ̂(ψ/φ)t
might range between 1 and 9 according to our different scaling factors. However, since
estimated returns to compulsory schooling range between 9.5% and 17.4% (Oreopoulos,
2007), a scaling factor of 0.25 seems to be the most likely case according to column

21The hurdle rate values reported by Oreopoulos (2007) are estimated for individuals between age
14 and 16. Thereby, our initial length of schooling of 15.3 years is between the range of ages used by
Oreopoulos (2007).
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VI in Table 3. In Figure 7, the red dashed curve depicts the evolution of ̂(ψ/φ)t that
corresponds to the human capital scaling factor of 0.25, which takes values between 4.9
(cohort 1890) and 3.8 (cohort 1930). A human capital scaling factor of 0.25 implies that
by staying an additional year in school lifetime wealth would have increased by 11.4%
for the cohort born in 1890, while it would have increased by 9.1% for the cohort born in
1930. These values are also within the empirically estimated increase in lifetime wealth
from an additional year of compulsory schooling that range between 8.5% and 17.6%
(Oreopoulos, 2007).

In sum, we conclude, based on the comparison of our results to the existing empirical
literature on the returns to schooling, that the most likely value of ψ/φ is 4.9. Therefore,
our “aversion to schooling time” is significant and implies that the observed decline in
mortality would account for 40.7% of the decline in the retirement age and 29.7% of the
increase in the years of schooling in the US.

Birth cohort
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Figure 7: Values of ̂(ψ/φ)t that match the observed length of schooling and retirement age by cohort for
different ξ values

5. Conclusion

Existing theoretical models predict a causal positive relation between increasing life
expectancy and human capital investments and retirement age. However, one salient
feature of the economic development during the last two centuries is the negative relation
between life expectancy and the extensive labor supply. To reconcile the empirical evi-
dence with economic theory, we develop a lifecycle model with endogenous human capital
investment and labor supply in which mortality declines may cause higher schooling and
early retirement.

This article makes two important contributions. First, we show that the ‘aversion to
schooling time’ assumption is a necessary, although not sufficient, condition for a decline
in mortality to cause higher education and early retirement age. The intuition is as fol-
lows. Individuals who are averse to schooling time do not maximize their lifetime income,
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since they prefer to anticipate their entrance into the labor market. As a consequence,
we show that a higher human capital investment, triggered by a decrease in mortality,
raises lifetime income (i.e., positive income effect). This positive income effect reduces
the marginal benefit of working. Thus, in this setting, when the income effect dominates
over the substitution effect, a decline in mortality might lead to higher education and
early retirement age. Second, we derive the differential impact of the mortality decline
at any arbitrary age on education and retirement. We show that a mortality decline
after retirement always results in higher human capital investment and late retirement,
whereas a mortality decline at younger ages leads to higher human capital investment and
may, or may not, cause early retirement. Using mortality data for cohorts born between
year 1890 and 1930 in US and Sweden, we show for reasonable values of the ‘aversion to
schooling time’ and the intertemporal elasticity of substitution that improvements in the
survival probability may account for a 40% of the decline in the retirement age and 30%
of the increase in the years of education.

For simplicity, our model abstracts from realistic features like the existence of a pen-
sion system, the intervention of governments in the access to all levels of education, the
introduction of mandatory years of schooling and retirement ages. Still, our results offer
an explanation to the empirical evidence, collected during the last centuries in US and
Sweden, on the evolution of education and retirement. Moreover, our model is robust
to the introduction of the above mentioned features. For instance, if education and re-
tirement are negatively related, positive spillovers from education and publicly provided
education will increase the marginal benefit of schooling and will reduce even further
the retirement age. Similarly, the existence of pension incentives for early retirement
and the overall increase in the labor-augmenting technological progress during the last
century would have induced earlier retirement ages and higher increases in the marginal
benefit of schooling. Therefore, our results suggest some interesting directions for future
research. In particular, first, a logical extension of our framework is the introduction of
a pension systems. Second, the implementation of the model in a computable general
equilibrium setting in order to analyze the effect of changes in wages and interest rates.
The implementation of these issues can provide researchers and policy-makers a better
understanding of the effect of changes in the population on modern economic growth.

AppendixA. Proof of Proposition 1

We first derive the optimal length of schooling condition (S∗) and optimal retirement
age (R∗) introduced in Eqs. (8)-(9). Second, we study the conditions for a maximum in
S∗ and R∗. Substituting the conditional optimal consumption, c(x, S, R), into (2) and
differentiating it with respect to S, we obtain

VS(S,R) =

∫ ω

0

e−ρxp(x)Uc
(
c(x, S, R)

)
cS(x, S, R)dx− e−ρSp(S)ψ(S). (A.1)

Substituting (7) in (A.1), and rearranging, gives

VS(S,R) = Uc
(
c(0, S, R)

) ∫ ω

0

e−rxp(x)cS(x, S, R)dx− e−ρSp(S)ψ(S). (A.2)
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Differentiating (6) with respect to S, and simplifying, we have∫ ω

0

e−rxp(x)cS(x, S, R)dx

= e−rSp(S)
(∫ R

S

e−r(x−S)
p(x)

p(S)
yS(S, x)dx− y(S, S)

)
. (A.3)

Substituting (A.3) in (A.2), and taking Uc
(
c(0, S, R)

)
e−rSp(S) as common factor, we

obtain

VS(S,R) = Uc
(
c(0, S, R)

)
e−rSp(S)×(∫ R

S

e−r(x−S)
p(x)

p(S)
yS(S, x)dx− y(S, S)− e(r−ρ)Sψ(S)

Uc
(
c(0, S, R)

)
)
. (A.4)

Setting VS(S,R) to zero and simplifying, the first-order condition for an optimal length
of schooling is given by (8).

Applying a similar approach, the derivative of (2) with respect to R becomes

VR(S,R) = p(R)
(
Uc
(
c(0, S, R)

)
e−rRy(S,R)− e−ρRφ(R)

)
. (A.5)

Then, setting VR(S,R) to zero and simplifying, the first-order condition for an optimal
retirement age is given by (9).

Let V̂ (S,R) be the expected lifetime utility conditional on the optimal consumption
path. Also, let c∗ be optimal initial consumption condition on S = S∗ and R = R∗. In
order for V̂ to be strictly concave at S = S∗ and R = R∗ it needs to satisfy

V̂SS < 0, V̂RR < 0, (A.6a)∣∣∣∣ V̂SS V̂SR
V̂RS V̂RR

∣∣∣∣ > 0. (A.6b)

Substituting (10) in (A.4), differentiating with respect to S around (S∗, R∗), using (15),
and simplifying gives

V̂SS(S
∗, R∗) = Uc

(
c∗
)
e−rS

∗
p(S∗)

×
(
fS(S

∗, R∗)− f(S∗, R∗)
(
ψS(S

∗)
ψ(S∗)

+
1

σ(c∗)
c∗S
c∗

))
. (A.7)

Since the sign
[
ψS(S

∗)
ψ(S∗)

]
and sign [c∗S] is the same as the sign of f(S∗, R∗), a necessary and

sufficient condition for S∗ < R∗ to be a maximum of V̂ (S,R∗) is

fS(S
∗, R∗) < f(S∗, R∗)

(
ψS(S

∗)
ψ(S∗)

+
1

σ(c∗)
c∗S
c∗

)
. (A.8)

For f(S∗, R∗) > 0 notice that fS(S
∗,R∗)

f(S∗,R∗) − ψS∗(S∗)
ψ(S∗) < 1

σ(c∗)
c∗S
c∗ . It is also worth noticing that

for f(S∗, R∗) = 0, fS(S
∗, R∗) < 0.

Differentiating (A.5) with respect to R, at S = S∗ and R = R∗, gives

V̂RR(S
∗, R∗) = Uc

(
c∗
)
e−rR

∗
p(R∗)y(S∗, R∗)

×
(
− 1

σ(c∗)
c∗R
c∗

+
yR(S

∗, R∗)
y(S∗, R∗)

− φR(R
∗)

φ(R∗)

)
. (A.9)

26



Provided yR(S
∗, R∗) = wR−S(R

∗−S∗)
w(R∗−S∗) − δ ≤ 0 and since φx(x) ≥ 0, we conclude that

V̂RR(S
∗, R∗) < 0 is strictly negative. Note that these results are derived assuming a

general functional form for the wage rate per unit of human capital. Finally, the second-
order conditions of the maximum in S = S∗ and R = R∗ is satisfied, if (A.8) holds,
yR(S

∗, R∗) ≤ 0, and

V̂SR(S
∗, R∗)

−V̂SS(S∗, R∗)
× V̂RS(S

∗, R∗)

−V̂RR(S∗, R∗)
< 1. (A.10)

Since dS∗
dR

∣∣
R=R∗ = V̂SR(S∗,R∗)

−V̂SS(S∗,R∗)
and dR∗

dS

∣∣
S=S∗ =

V̂RS(S
∗,R∗)

−V̂RR(S∗,R∗)
, it follows from (A.10) that the

impact of a change in S∗ on R∗ differs from the impact of a change in R∗ on S∗; i.e.
dS∗
dR

∣∣
R=R∗ × dR∗

dS

∣∣
S=S∗ < 1.

AppendixB. Partial effect

Following the same order as the derivation of the first-order conditions, we first study
the partial impact that a mortality decline has on the optimal consumption path and,
second, we continue with the analysis of the partial effect of a mortality decline on the
optimal length of schooling and retirement age.

To study the effect of mortality on our variables of interest, we make use of the
derivative of a functional (Ryder and Heal, 1973; d’Albis et al., 2012) to obtain, through
(1), that

− ∂p(x)

∂μ(x0)
=

{
p(x) if x0 ≤ x,

0 if x0 > x.
(B.1)

Eq. (B.1) means that a mortality decline at age x0 has no effect on the survival probability
before age x0, but it increases the survival probability at ages above or equal to x0. From
(B.1) we derive the impact that a mortality decline at an arbitrary age x0 has on the
optimal consumption path and, in particular, on the initial optimal consumption (c∗).
Differentiating (6) and (7) with respect to −μ(x0), substituting, and rearranging gives

1

c∗
−∂c∗
∂μ(x0)

= −σ(c
∗)

σ(c̄)

e−rx0p(x0)a(x0)
W (S∗, R∗)

. (B.2)

Notice in Eq. (B.2) that if the IES is constant across the lifecycle, the relative impact
of a mortality decline at age x0 on the initial consumption is minus the ratio between
the financial wealth position at age x0 and lifecycle earnings. Thereby, the sign of the
impact of a decline in mortality at age x0 on the optimal consumption path is equal to
minus the sign of the financial wealth at age x0. Moreover, according to Eq. (B.2) a
decline in mortality at two different ages does not necessarily have the same impact on
consumption.22

Eq. (B.2) is the extension of Eq. (B.5) in d’Albis et al. (2012) to a model with en-
dogenous human capital investment. Like d’Albis et al. (2012) we show that the optimal
consumption path increases with a decline in mortality at age x0 when a(x0) < 0, while

22The partial impact of a mortality decline at all ages on the initial consumption is

1

c∗
−∂c∗
∂μ

=

∫ ω

0

1

c∗
−∂c∗
∂μ(x)

dμ(x) = −σ(c
∗)

σ(c̄)

∫ ω

0 e−rxp(x)a(x)dμ(x)

W (S∗, R∗)
. (B.3)
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the optimal consumption declines when a(x0) > 0, for all x0 ∈ [0, ω). The intuition is
simple. On the one hand, a decline in mortality increases the number of years the agent
is expected to live. As a consequence, agents compensate a longer lifespan with an overall
reduction in consumption. This effect, which is always negative, is named the “years-
to-consume” effect. On the other hand, a mortality decline during the working period
raises the likelihood of receiving a future labor income stream, which leads to an overall
increase in the consumption path. This other effect, which is always positive, is named
the “lifetime human wealth” effect. For a better understanding, Proposition 3 gives the
net result of these two opposite effects using a CIES utility function.

Proposition 3. For the life-cycle model given by (1)-(5), if Uc(c) is a power function,
the overall result of 1

c∗
−∂c∗
∂μ(x0)

is the same as that of

g(x0) =

∫ R∗

S∗ e
−rx
[
−∂p(x)
∂μ(x0)

]
y(S∗, x)dx∫ R∗

S∗ e−rxp(x)y(S∗, x)dx
−
∫ ω
x0
e−[(1−σ)r+σρ]xp(x)dx∫ ω

0
e−[(1−σ)r+σρ]xp(x)dx

, (B.4)

where σ ∈ [0, 1] is the intertemporal elasticity of substitution. Moreover, there exists a
critical point xc within the open interval (S∗, R∗) such that⎧⎪⎨

⎪⎩
g(x0) > 0 for all x0 < xc,

g(x0) = 0 for all x0 = xc,

g(x0) < 0 for all x0 > xc.

(B.5)

Proof. If Ux(x) = x−
1
σ , where σ is the intertemporal elasticity of substitution, from

(7) we have c(x, S, R) = c(0, S, R)eσ(r−ρ)x, for all x ∈ (0, ω), substituting it in (6), and
simplifying, we obtain

c(0, S, R) =

∫ R
S
e−rxp(x)y(S, x)dx∫ ω

0
e−[(1−σ)r+σρ]xp(x)dx

. (B.6)

Taking logarithms at both sides of (B.6) and differentiating with respect to −μ(x0) gives
1

c(0, S, R)

−∂c(0, S, R)
∂μ(x0)

=

∫ R
S
e−rx

[
−∂p(x)
∂μ(x0)

]
y(S, x)dx∫ R

S
e−rxp(x)y(S, x)dx

−
∫ ω
x0
e−[(1−σ)r+σρ]xp(x)dx∫ ω

0
e−[(1−σ)r+σρ]xp(x)dx

, (B.7)

Note that the right-hand side of (B.7) at S = S∗ and R = R∗ is (B.4). Now, from (B.4),
we obtain g(S∗) > 0, g(R∗) < 0,

g′(x0) = − e−rx0p(x0)y(S∗, x0)∫ R∗

S∗ e−rxp(x)y(S∗, x)dx
+

e−[(1−σ)r+σρ]x0p(x0)∫ ω
0
e−[(1−σ)r+σρ]xp(x)dx

, (B.8)

and

g′′(x0) =

[
r + μ(x0)− yx0(S

∗,x0)
y(S∗,x0)

]
e−rx0p(x0)y(S∗, x0)∫ R∗

S∗ e−rxp(x)y(S∗, x)dx

− [(1− σ)r + σρ+ μ(x0)] e
−[(1−σ)r+σρ]x0p(x0)∫ ω

0
e−[(1−σ)r+σρ]xp(x)dx

, (B.9)
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for any x0 within the interval (S∗, R∗). Since g(·) is a continuous function in (S∗, R∗),
g(S∗) > 0, and g(R∗) < 0 imply that there exists at least a critical age xc within the
interval (S∗, R∗) such that g(xc) = 0.

In order to prove that xc is unique, we show that there exists only one local optimum
in the interval (S∗, R∗). At a local optimum (denoted by x̃0, with g

′(x̃0) = 0), from (B.8)
and (B.9) we obtain

g′′(x̃0) =

[
σ (r − ρ)− yx0 (S

∗,x0)
y(S∗,x0)

]
e−rx̃0p(x̃0)y(S∗, x̃0)∫ R∗

S∗ e−rxp(x)y(S∗, x)dx
. (B.10)

Let x̃i0 and x̃ii0 be two possible candidates, which satisfy that g′(x̃i0) = 0 and g′(x̃ii0 ) = 0
with x̃i0 < x̃ii0 . Provided that y(S∗, x) is strictly concave within the interval (S∗, R∗), x̃0
is unique (x̃i0 = x̃ii0 ) either because σ (r − ρ) − yx0 (S

∗,x0)
y(S∗,x0) < 0 or σ (r − ρ) − yx0 (S

∗,x0)
y(S∗,x0) > 0

for all x̃0 ∈ (S∗, R∗), or x̃i0 is a local maximum and x̃ii0 a local minimum, which proves
that xc is unique.

The first component of (B.4) is the “lifetime human wealth” effect, while the second
component represents the “years-to-consume” effect. An illustration of the shape of both
effects across the life-cycle is given in Figure B.8. Notice the lifetime human wealth effect
dominates the years-to-consume effect up to age xc ∈ (S∗, R∗), the year at which the
financial wealth is zero, a(xc) = 0. Therefore, a mortality decline early in life leads to an
overall increase in consumption. In contrast, a decline in mortality at ages above xc leads
to an overall decline in consumption because the years-to-consume effect dominates the
lifetime human wealth effect. Though for simplicity we have not modeled any retirement
pension system, our results are robust to the introduction of a more general and realistic
framework. Indeed, the introduction of an income during the retirement period will
extend the lifetime human wealth effect up to age ω, shifting the age xc toward older
ages.

The partial impact of a decline in mortality on the length of schooling and retirement
age is given in Proposition 4.

Proposition 4. For the life-cycle model given by (1)-(5),

(a) the sign of −S∗
μ(x0)

is the same as that of

rh(S∗)− r̄(S∗, R∗)
σ(c̄)

a(x0), (B.11)

when x0 ≤ S∗ and x0 ≥ R∗, and

rh(S∗)− r̄(S∗, R∗)
σ(c̄)

a(x0) +

∫ R∗

x0

e−r(x−x0)
p(x)

p(x0)
yS(S

∗, x)dx, (B.12)

when x0 ∈ (S∗, R∗), and

(b) the sign of −R∗
μ(x0)

is the same as that of a(x0).

Proof. Given the implicit-function theorem holds, there is one unique function Γ(R;μ)
that equals S∗ for any (R;μ) around (R∗;μ(x0)). Provided the optimal length of schooling
condition (8)

V̂S(Γ(R;μ), R;μ) = V̂S(S
∗, R∗;μ(x0)) = 0, (B.13)
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Figure B.8: The lifetime human wealth and years-to-consume effect

and assuming V̂ (S,R;μ) is strictly concave around the point (S∗, R∗;μ(x0)). Then, we
differentiate (B.13) with respect to a mortality decline at an arbitrary age x0, −μ(x0),
to obtain the marginal impact of a mortality decline on the optimal length of schooling.
Applying the Chain rule in (B.13) we obtain

−S∗
μ(x0)

=

−∂f(S∗,R∗)
∂μ(x0)

− f(S∗,R∗)
σ(c∗)

1
c∗

−∂c∗
∂μ(x0)

f(S∗, R∗)
(
ψS(S∗)
ψ(S∗) + 1

σ(c∗)
c∗S
c∗

)
− fS(S∗, R∗)

. (B.14)

Thus, from (A.8) we have

sign
[−S∗

μ(x0)

]
= sign

[−∂f(S∗, R∗)
∂μ(x0)

− f(S∗, R∗)
σ(c∗)

1

c∗
−∂c∗
∂μ(x0)

]
. (B.15)

Note from (B.1) that the first term on the right-hand side of (B.15) is zero whenever

x0 ≤ S∗ or x0 ≥ R∗. Substituting (11)-(12) and (B.2) in (B.15), and taking e−r(x0−S
∗) p(x0)
p(S∗)

as common factor gives

sign
[−S∗

μ(x0)

]
= sign

[
rh(S∗)− r̄(S∗, R∗)

σ(c̄)
a(x0)

]
. (B.16)

when x0 ≤ S∗ and x0 ≥ R∗, and

sign
[−S∗

μ(x0)

]
= sign

[
rh(S∗)− r̄(S∗, R∗)

σ(c̄)
a(x0) +

∫ R∗

x0

e−r(x−x0)
p(x)

p(x0)
yS(S

∗, x)dx
]
.

(B.17)
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when x0 ∈ (S∗, R∗). This proves Proposition 4(a).
Similarly, given that the implicit-function theorem holds, there is one unique function

Υ(S;μ) that equals R∗ for any (S;μ) around (S∗;μ(x0)). Provided the optimal retirement
age condition (9)

V̂R(S,Υ(S;μ);μ) = V̂R(S
∗, R∗;μ(x0)) = 0. (B.18)

Assuming V̂ (S,R;μ) is strictly concave around the point (S∗, R∗;μ(x0)). We obtain after
differentiating (B.18) with respect to −μ(x0), and applying the Chain rule,

−R∗
μ(x0)

=
− 1
σ(c∗)

1
c∗

−∂c∗
∂μ(x0)

1
σ(c∗)

c∗R
c∗ + δ + φR(R∗)

φ(R∗)

. (B.19)

From (A.9), we have

sign
[−R∗

μ(x0)

]
= −sign

[ −∂c∗
∂μ(x0)

]
. (B.20)

Now, in order to prove Proposition (4)(b) we show that the sign of −R∗
μ(x0)

is that of

a(x0).
Differentiating (6) at S = S∗ and R = R∗ with respect to −μ(x0), and rearranging,

gives∫ ω

x0

e−rxp(x)c(x, S∗, R∗)dx+
∫ ω

0

e−rxp(x)
−∂c(x, S∗, R∗)

∂μ(x0)
dx =

∫ R∗

S∗
e−rx

−∂p(x)
∂μ(x0)

y(S∗, x)dx.

(B.21)
The intertemporal budget constraint at age x0 can be expressed as

e−rx0p(x0)a(x0)

=

⎧⎨
⎩
∫ ω
x0
e−rxp(x)c(x, S∗, R∗)dx− ∫ R∗

x0
e−rxp(x)y(S∗, x)dx if S∗ < x0 < R∗,∫ ω

x0
e−rxp(x)c(x, S∗, R∗)dx otherwise.

(B.22)

Substituting (B.22) into (B.21), we obtain∫ ω

0

e−rxp(x)
−∂c(x, S∗, R∗)

∂μ(x0)
dx = −e−rx0p(x0)a(x0). (B.23)

Differentiating (7) at S = S∗ and R = R∗ with respect to −μ(x0), and simplifying, gives

1

c(x, S∗, R∗)
−∂c(x, S∗, R∗)

∂μ(x0)
=
σ(c(x, S∗, R∗))

σ(c∗)
1

c∗
−∂c∗
∂μ(x0)

. (B.24)

Substituting (B.24) into (B.23), and rearranging, we get (B.2). Finally, substituting (B.2)
in (B.20), we have

sign
[−R∗

μ(x0)

]
= −sign

[ −∂c∗
∂μ(x0)

]
= sign [a(x0)] , (B.25)

which proves Proposition 4(b).
In Proposition 4(b) we obtain the same “consumption-leisure” relationship as in

d’Albis et al. (2012). That is, given that consumption and leisure are normal goods,
Proposition 4(b) implies that if a mortality decline yields an increase in consumption
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because the lifetime human wealth effect dominates the years-to-consume effect, agents
anticipate their optimal retirement age in order to enjoy more leisure time. Similarly,
when the decline in mortality implies that the years-to-consume effect dominates the life-
time human wealth effect, agents diminish their consumption and postpone their optimal
retirement age.

Proposition 4(a) extends the years-to-consume effect and lifetime human wealth effect
reasoning to the accumulation of human capital. In this regard, we obtain unambiguous
results concerning the sign on the optimal length of schooling of a mortality decline at ages
before the entrance into the labor market, S∗, and after the optimal retirement age, R∗.
Specifically, Proposition 4(a) implies that when rh(S∗) > r̄(S∗, R∗), if a mortality decline
yields an increase in consumption because the lifetime human wealth effect dominates
the years-to-consume effect, agents reduce their investment in education. Recall that
this happens during the schooling period as Figure B.8 shows. In contrast, a decline in
mortality after the optimal retirement age leads to more years of schooling. Instead, if
rh(S∗) = r̄(S∗, R∗) –as frequently assumed in the literature– a decline in mortality during
the schooling period or during retirement period does not have an impact on the optimal
length of schooling.

During the working period, Proposition 4(a) shows that a decline in mortality posi-
tively affects education through the second term in Eq. (B.12), which reflects the effect
of a mortality decline at age x0 on the marginal benefit of schooling (measured at age
x0), also known as the Ben-Porath mechanism. Actually, this is the only component
driving the effect of mortality on the length of schooling when rh(S∗) = r̄(S∗, R∗), but it
is not the case whenever rh(S∗) �= r̄(S∗, R∗). In other words, under a model of human
capital investment with a fixed retirement age, only improvements in survival during
prime-working ages triggers the Ben-Porath mechanism (Cervellati and Sunde, 2013).

AppendixC. Proof of Proposition 4

Given the implicit-function theorem holds, there are two unique functions Γ(R;μ) and
Υ(S;μ) that are equal to S∗ and R∗, respectively, for any (S,R;μ) around (S∗, R∗;μ(x0)).
Provided the optimal length of schooling and retirement age conditions, we have:

V̂S(Γ(R;μ),Υ(S;μ);μ) = V̂S(S
∗, R∗;μ(x0)) = 0, (C.1a)

V̂R(Γ(R;μ),Υ(S;μ);μ) = V̂R(S
∗, R∗;μ(x0)) = 0. (C.1b)

For notational simplicity, hereinafter we skip the arguments. Writing the system of
equations (C.1) in differential form we have

V̂SΓdΓ + V̂SΥdΥ+ V̂Sμdμ = 0, (C.2a)

V̂RΓdΓ + V̂RΥdΥ+ V̂Rμdμ = 0. (C.2b)

If V̂S(·) and V̂R(·) are continuously differentiable with respect to (S,R;μ), (S∗, R∗) is
a solution of the system at the mortality value μ(x0), and the Jacobian matrix of the
system (C.1) evaluated at (S∗, R∗;μ(x0)) is not singular, or |J | �= 0, then the system can
be locally solved at (S∗, R∗;μ(x0)).

The solution of (C.2), by Cramer’s rule, is⎛
⎝ dS∗

dμ(x0)

dR∗
dμ(x0)

⎞
⎠ =

1

|J |

⎛
⎝−V̂RRV̂Sμ(x0) + V̂RSV̂Rμ(x0)

V̂SRV̂Sμ(x0) − V̂SSV̂Rμ(x0)

⎞
⎠ . (C.3)
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Taking V̂RRV̂SS as common factor in the right-hand side of (C.3) gives

⎛
⎝ dS∗

dμ(x0)

dR∗
dμ(x0)

⎞
⎠ =

V̂RRV̂SS
|J |

⎛
⎜⎝

V̂Sμ(x0)

−V̂SS
+ V̂RS

−V̂SS

V̂Rμ(x0)

−V̂RR

V̂Rμ(x0)

−V̂RR
+ V̂SR

−V̂RR

V̂Sμ(x0)

−V̂SS

⎞
⎟⎠ . (C.4)

Provided the strict concavity of V̂ (S,R;μ) at (S∗, R∗;μ(x0)) and multiplying both sides
of (C.4) by −1, since we are interested in the effect of a decline in mortality rather than
an increase in mortality, we obtain

sign

[ −dS∗

dμ(x0)

]
= − sign

[
S∗
μ(x0)(R

∗;μ) +
dS∗

dR∗R
∗
μ(x0)(S

∗;μ)
]
, (C.5)

sign

[ −dR∗

dμ(x0)

]
= − sign

[
R∗
μ(x0)

(S∗;μ) +
dR∗

dS∗S
∗
μ(x0)

(R∗;μ)
]
. (C.6)

This completes the proof of Eqs. (23a) and (23b).
We now differentiate (A.4) and (A.5) with respect to −μ(x0) at (S∗, R∗), respectively,

−V̂Sμ(x0) = Uc
(
c∗
)
e−rS

∗
p(S∗)

(−∂f(S∗, R∗)
∂μ(x0)

− f(S∗, R∗)
σ(c∗)

1

c∗
−∂c∗
∂μ(x0)

)
, (C.7)

−V̂Rμ(x0) = Uc
(
c∗
)
e−rR

∗
p(R∗)y(S∗, R∗)

(
− 1

σ(c∗)
1

c∗
−∂c∗
∂μ(x0)

)
. (C.8)

Substituting (C.7)-(C.8) in (C.5), taking Uc(c∗)e−rS∗
p(S∗)

−V̂SS(S∗,R∗)
as common factor, and using (11),

(17) and (19), we get

sign

[ −dS∗

dμ(x0)

]
= sign

[−∂f(S∗, R∗)
∂μ(x0)

− f(S∗, R∗)
σ(c∗)

1

c∗
−∂c∗
∂μ(x0)

(
1 +

dR∗

dS∗
c∗R
c∗S

)]
. (C.9)

Using (10), (17), and (B.2) we obtain, after rearranging,

sign

[ −dS∗

dμ(x0)

]
= sign

[∫ R∗

S∗
e−r(x−S

∗) −∂
∂μ(x0)

[
p(x)

p(S∗)

]
yS(S

∗, x)dx

−e−r(x0−S∗) p(x)

p(S∗)
a(x0)

1

σ(c∗)c∗

(
c∗S + c∗R

dR∗

dS∗

)]
. (C.10)

Finally, taking e−r(x0−S
∗) p(x)
p(S∗) as common factor and using the fact that dc∗

dS∗ = c∗S + c
∗
R
dR∗
dS∗

we obtain Proposition 2(a), or Eq. (24).
Using the same steps for the sign of −dR∗

dμ(x0)
but now taking −V̂RR as common factor,

it can be shown that

sign

[ −dR∗

dμ(x0)

]
= sign

[
dS∗

dR∗

∫ R∗

S∗
e−r(x−S

∗) −∂
∂μ(x0)

[
p(x)

p(S∗)

]
yS(S

∗, x)dx

−e−r(x0−S∗) p(x)

p(S∗)
a(x0)

1

σ(c∗)c∗

(
c∗R + c∗S

dS∗

dR∗

)]
. (C.11)

Similarly, taking e−r(x0−S
∗) p(x)
p(S∗) as common factor and using the fact that dc∗

dR∗ = c∗R+c
∗
S
dS∗
dR∗

we obtain Proposition 2(b), or Eq. (25).
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