7 research outputs found

    Synchrotron X-ray characterization of crack strain fields in polygranular graphite

    Get PDF
    The strain field of a crack in polygranular isotropic nuclear graphite, a quasi-brittle material, has been studied during stable fracture propagation. Synchrotron X-ray computed tomography and strain mapping by diffraction were combined with digital volume correlation and phase congruency image analysis to extract the full field displacements and elastic crystal strains. The measured displacement fields have been analysed using a Finite Element method to extract the elastic strain energy release rate as a J-integral. Non-linear properties described the effect of microcracking on the elastic modulus in the fracture process zone. The analysis was verified by the good agreement of the predicted and measured elastic strain fields when using the non-linear model. The intrinsic critical elastic strain energy release rate for mode I crack propagation is approximately 200 J m-2

    J-Integral Calculation by Finite Element Processing of Measured Full-Field Surface Displacements

    Get PDF
    © 2017 The Author(s)A novel method has been developed based on the conjoint use of digital image correlation to measure full field displacements and finite element simulations to extract the strain energy release rate of surface cracks. In this approach, a finite element model with imported full-field displacements measured by DIC is solved and the J-integral is calculated, without knowledge of the specimen geometry and applied loads. This can be done even in a specimen that develops crack tip plasticity, if the elastic and yield behaviour of the material are known. The application of the method is demonstrated in an analysis of a fatigue crack, introduced to an aluminium alloy compact tension specimen (Al 2024, T351 heat condition)

    RANKS AND EMBEDDINGS OF CC^*-ALGEBRAS OF CONTINUOUS FIELDS (Free products in operator algebras and related topics)

    Get PDF
    Recent developments of synchrotron X-ray sources and dedicated high-energy beamlines are now enabling strain measurements from large volumes of industrially relevant metallic materials. Such capability is allowing the validation of novel and alternative nondestructive experimental methods of strain measurement or computational models of complex deformation processes. This study describes the first dynamic contact strain measurement of a ball bearing using stroboscopic energy dispersive X-ray diffraction. The experiment probed the dynamic contact strain in the outer raceway of a test bearing. The inner raceway of the bearing was attached to a shaft rotating at 150 revolutions per minute, and the outer raceway, where the measurements were made, was fixed in a stationary bearing housing. A triggering system was used to synchronise the data acquisition of the energy dispersive X-ray diffraction detector with the bearing rotation. Specifically, diffraction data were acquired, stroboscopically, from the material volume within the raceway, in a known location, when the ball was positioned directly below it. A total of 20 s of accumulated diffraction signal was recorded, acquiring 2 ms of data per revolution, providing diffraction patterns of sufficient quality for the dynamic contact strain to be measured. Macromechanical stress field was calculated from the micromechanical strains measured from five lattice planes. This allowed a comparison of the experimentally measured stress field and that of finite element simulations. Good agreement was observed between the finite element results and experimental measurements indicating the applicability of this novel dynamic strain measurement technique for tribological systems

    Procedure for accurate calculation of the J-integral from digital volume correlation displacement data

    No full text
    The application of digital image and volume correlation techniques to obtain displacement fields from images has become ubiquitous in experimental fracture mechanics. In this paper, a procedure to extract the J-integral (J) from three-dimensional displacement fields obtained using digital volume correlation is presented. The procedure has been specially adapted to allow for experimental noise and errors, such as poorly defined crack front displacements, smearing of the displacement field across the crack faces, and knowledge of the imprecise crack front location. The implementation is verified using analytical crack-tip fields perturbed with synthetic image correlation errors to characterise the response of J. The method is then applied to experimental results using a Magnesium alloy WE43 loaded elastically in mixed mode. The steps outlined are intended as a guideline for the application of the volume integral from displacement fields to allow for accurate calculation of J along a crack front embedded within the volume
    corecore