4 research outputs found

    Synthesis and biological evaluation of new 3(2H)-pyridazinone derivatives as non-toxic anti-proliferative compounds against human colon carcinoma HCT116 cells

    No full text
    Novel 3(2H)-pyridazinone derivatives were designed, synthesised in satisfactory yields and evaluated in different experimental assays to assess their preliminary toxicity in vivo and anti-proliferative effects against HCT116 cell lines in vitro. Artemia salina lethality test provided LC50 values >100 mu g/mL for all compounds. Successive assays revealed that some compounds were endowed with a promising anti-proliferative effect against HCT116 cells, alone or stimulated by serotonin as a pro-inflammatory factor in order to mimick an inflamed model in vivo of cancer cell microenvironment. Moreover, the kinurenic acid level after treatment with these newly synthesised compounds was monitored as a marker of anti-proliferation in colon carcinoma models. The IC50 values obtained for the best-in-class compounds were comparable to that of daunorubicin as a reference drug. Conversely, these compounds were not able to counteract the spontaneous migration of human cancer HCT116 cell line in the wound healing paradigm

    Design, Synthesis, and Biological Evaluation of Pyridazinones Containing the (2-Fluorophenyl) Piperazine Moiety as Selective MAO-B Inhibitors

    No full text
    Twelve pyridazinones (T1-T12) containing the (2-fluorophenyl) piperazine moiety were designed, synthesized, and evaluated for monoamine oxidase (MAO) -A and -B inhibitory activities. T6 was found to be the most potent MAO-B inhibitor with an IC50 value of 0.013 mu M, followed by T3 (IC50 = 0.039 mu M). Inhibitory potency for MAO-B was more enhanced by meta bromo substitution (T6) than by para bromo substitution (T7). For para substitution, inhibitory potencies for MAO-B were as follows: -Cl (T3) > -N(CH3)(2) (T12) > -OCH3 (T9) > Br (T7) > F (T5) > -CH3 (T11) > -H (T1). T6 and T3 efficiently inhibited MAO-A with IC50 values of 1.57 and 4.19 mu M and had the highest selectivity indices (SIs) for MAO-B (120.8 and 107.4, respectively). T3 and T6 were found to be reversible and competitive inhibitors of MAO-B with K-i values of 0.014 and 0.0071, respectively. Moreover, T6 was less toxic to healthy fibroblast cells (L929) than T3. Molecular docking simulations with MAO binding sites returned higher docking scores for T6 and T3 with MAO-B than with MAO-A. These results suggest that T3 and T6 are selective, reversible, and competitive inhibitors of MAO-B and should be considered lead candidates for the treatment of neurodegenerative disorders like Alzheimer's disease
    corecore