734 research outputs found

    MARGIE: A gamma-ray burst ultra-long duration balloon mission

    Get PDF
    We are designing MARGIE as a 100 day ULDB mission to: a) detect and localize gamma-ray bursts; and b) survey the hard X-ray sky. MARGIE will consist of one small field-of-view (FOV) and four large FOV coded mask modules mounted on a balloon gondola. The burst position will be calculated onboard and disseminated in near-real time, while information about every count will be telemetered to the ground for further analysis. In a 100-day mission we will localize ∼40 bursts with peak photon fluxes from 0.14 to ∼5 ph cm−2 s−1 using 1 s integrations; the typical localization resolution will be better than ∼2 arcminutes

    Interference of Clocks: A Quantum Twin Paradox

    Get PDF
    The phase of matter waves depends on proper time and is therefore susceptible to special-relativistic (kinematic) and gravitational time dilation (redshift). Hence, it is conceivable that atom interferometers measure general-relativistic time-dilation effects. In contrast to this intuition, we show that light-pulse interferometers without internal transitions are not sensitive to gravitational time dilation, whereas they can constitute a quantum version of the special-relativistic twin paradox. We propose an interferometer geometry isolating the effect that can be used for quantum-clock interferometry.Comment: 9 Pages, 2 Figure

    C, N, O Abundances in the Most Metal-Poor Damped Lyman alpha Systems

    Full text link
    This study focuses on some of the most metal-poor damped Lyman alpha absorbers known in the spectra of high redshift QSOs, using new and archival observations obtained with UV-sensitive echelle spectrographs on the Keck and VLT telescopes. The weakness and simple velocity structure of the absorption lines in these systems allows us to measure the abundances of several elements, and in particular those of C, N, and O, a group that is difficult to study in DLAs of more typical metallicities. We find that when the oxygen abundance is less than about 1/100 of solar, the C/O ratio in high redshift DLAs and sub-DLAs matches that of halo stars of similar metallicity and shows higher values than expected from galactic chemical evolution models based on conventional stellar yields. Furthermore, there are indications that at these low metallicities the N/O ratio may also be above simple expectations and may exhibit a minimum value, as proposed by Centurion and her collaborators in 2003. Both results can be interpreted as evidence for enhanced production of C and N by massive stars in the first few episodes of star formation, in our Galaxy and in the distant proto-galaxies seen as QSO absorbers. The higher stellar yields implied may have an origin in stellar rotation which promotes mixing in the stars' interiors, as considered in some recent model calculations. We briefly discuss the relevance of these results to current ideas on the origin of metals in the intergalactic medium and the universality of the stellar initial mass function.Comment: 17 pages, 9 Figures, Accepted for publication in Monthly Notices of the Royal Astronomical Societ

    The neutral gas extent of galaxies as derived from weak intervening CaII absorbers

    Full text link
    (Abridged) We present a systematic study of weak intervening CaII absorbers at low redshift (z<0.5), based on the analysis of archival high resolution (R>45,000) optical spectra of 304 quasars and active galactic nuclei observed with VLT/UVES. Along a total redshift path of Dz~100 we detected 23 intervening CaII absorbers in both the CaII H & K lines, with rest frame equivalent widths W_r,3934=15-799 mA and column densities log N(CaII)=11.25-13.04. We obtain a bias corrected number density of weak intervening CaII absorbers of dN/dz=0.117+-0.044 at z=0.35 for absorbers with log N(CaII)>11.65. This is ~2.6 times the value obtained for damped Lyman alpha absorbers (DLAs) at low redshift. From ionization modeling we conclude that intervening CaII absorption with log N(CaII)>11.5 arises in optically thick neutral gas in DLAs, sub-DLAs and Lyman limit systems (LLS) at HI column densities of log N(HI)>17.4. The relatively large cross section of these absorbers together with the frequent detection of CaII absorption in high velocity clouds (HVCs) in the halo of the Milky Way suggests that a considerable fraction of the intervening CaII systems trace dusty neutral gas structures in the halos and circumgalactic environment of galaxies (i.e., they are HVC analogs). Considering all galaxies with luminosities L>0.05L* we calculate that the characteristic radial extent of (partly) neutral gas clouds with log N(HI)>17.4 around low-redshift galaxies is R_HVC ~ 55 kpc.Comment: 20 pages, 15 figures; A&A, in press; this revision contains several changes that improve clarity of presentation reflecting the suggestions made by the refere

    Modeling the Redshift Evolution of the Normal Galaxy X-ray Luminosity Function

    Get PDF
    Emission from X-ray binaries (XRBs) is a major component of the total X-ray luminosity of normal galaxies, so X-ray studies of high redshift galaxies allow us to probe the formation and evolution of X-ray binaries on very long timescales. In this paper, we present results from large-scale population synthesis models of binary populations in galaxies from z = 0 to 20. We use as input into our modeling the Millennium II Cosmological Simulation and the updated semi-analytic galaxy catalog by Guo et al. (2011) to self-consistently account for the star formation history (SFH) and metallicity evolution of each galaxy. We run a grid of 192 models, varying all the parameters known from previous studies to affect the evolution of XRBs. We use our models and observationally derived prescriptions for hot gas emission to create theoretical galaxy X-ray luminosity functions (XLFs) for several redshift bins. Models with low CE efficiencies, a 50% twins mass ratio distribution, a steeper IMF exponent, and high stellar wind mass loss rates best match observational results from Tzanavaris & Georgantopoulos (2008), though they significantly underproduce bright early-type and very bright (Lx > 10d41) late-type galaxies. These discrepancies are likely caused by uncertainties in hot gas emission and SFHs, AGN contamination, and a lack of dynamically formed Low-mass XRBs. In our highest likelihood models, we find that hot gas emission dominates the emission for most bright galaxies. We also find that the evolution of the normal galaxy X-ray luminosity density out to z = 4 is driven largely by XRBs in galaxies with X-ray luminosities between 10d40 and 10d41 erg/s.Comment: Accepted into ApJ, 17 pages, 3 tables, 7 figures. Text updated to address referee's comment

    Minute-of-Arc Resolution Gamma ray Imaging Experiment—MARGIE

    Get PDF
    MARGIE (Minute-of-Arc Resolution Gamma-ray Imaging Experiment) is a large area(∼104 cm2), wide field-of-view (∼1 sr), hard X-ray/gamma-ray (∼20–600 keV) coded-mask imaging telescope capable of performing a sensitive survey of both steady and transient cosmic sources. MARGIE has been selected for a NASA mission-concept study for an Ultra Long Duration (100 day) Balloon flight. We describe our program to develop the instrument based on new detector technology of either cadmium zinc telluride (CZT) semiconductors or pixellated cesium iodide (CsI) scintillators viewed by fast-timing bi-directional charge-coupled devices (CCDs). The primary scientific objectives are to image faint Gamma-Ray Bursts (GRBs) in near-real-time at the low intensity (high-redshift) end of the logN-logS distribution, thereby extending the sensitivity of present observations, and to perform a wide field survey of the Galactic plane

    Gas Accretion and Giant Lyman-alpha Nebulae

    Full text link
    Several decades of observations and discoveries have shown that high-redshift AGN and massive galaxies are often surrounded by giant Lyman-alpha nebulae extending in some cases up to 500 kpc in size. In this review, I discuss the properties of the such nebulae discovered at z>2 and their connection with gas flows in and around the galaxies and their halos. In particular, I show how current observations are used to constrain the physical properties and origin of the emitting gas in terms of the Lyman-alpha photon production processes and kinematical signatures. These studies suggest that recombination radiation is the most viable scenario to explain the observed Lyman-alpha luminosities and Surface Brightness for the large majority of the nebulae and imply that a significant amount of dense, ionized and cold clumps should be present within and around the halos of massive galaxies. Spectroscopic studies suggest that, among the giant Lyman-alpha nebulae, the one associated with radio-loud AGN should have kinematics dominated by strong, ionized outflows within at least the inner 30-50 kpc. Radio-quiet nebulae instead present more quiescent kinematics compatible with stationary situation and, in some cases, suggestive of rotating structures. However, definitive evidences for accretion onto galaxies of the gas associated with the giant Lyman-alpha emission are not unambiguously detected yet. Deep surveys currently ongoing using other bright, non-resonant lines such as Hydrogen H-alpha and HeII1640 will be crucial to search for clearer signatures of cosmological gas accretion onto galaxies and AGN.Comment: Invited review to appear in Gas Accretion onto Galaxies, Astrophysics and Space Science Library, eds. A. J. Fox & R. Dave', to be published by Springe
    corecore