645 research outputs found
A ratchet mechanism for amplification in low-frequency mammalian hearing
The sensitivity and frequency selectivity of hearing result from tuned
amplification by an active process in the mechanoreceptive hair cells. In most
vertebrates the active process stems from the active motility of hair bundles.
The mammalian cochlea exhibits an additional form of mechanical activity termed
electromotility: its outer hair cells (OHCs) change length upon electrical
stimulation. The relative contributions of these two mechanisms to the active
process in the mammalian inner ear is the subject of intense current debate.
Here we show that active hair-bundle motility and electromotility can together
implement an efficient mechanism for amplification that functions like a
ratchet: sound-evoked forces acting on the basilar membrane are transmitted to
the hair bundles whereas electromotility decouples active hair-bundle forces
from the basilar membrane. This unidirectional coupling can extend the hearing
range well below the resonant frequency of the basilar membrane. It thereby
provides a concept for low-frequency hearing that accounts for a variety of
unexplained experimental observations from the cochlear apex, including the
shape and phase behavior of apical tuning curves, their lack of significant
nonlinearities, and the shape changes of threshold tuning curves of auditory
nerve fibers along the cochlea. The ratchet mechanism constitutes a general
design principle for implementing mechanical amplification in engineering
applications.Comment: 6 pages, 4 figures, plus Supplementary Information. Animation
available on the PNAS website (http://dx.doi.org/10.1073/pnas.0914345107)
A Comprehensive Three-Dimensional Model of the Cochlea
The human cochlea is a remarkable device, able to discern extremely small
amplitude sound pressure waves, and discriminate between very close
frequencies. Simulation of the cochlea is computationally challenging due to
its complex geometry, intricate construction and small physical size. We have
developed, and are continuing to refine, a detailed three-dimensional
computational model based on an accurate cochlear geometry obtained from
physical measurements. In the model, the immersed boundary method is used to
calculate the fluid-structure interactions produced in response to incoming
sound waves. The model includes a detailed and realistic description of the
various elastic structures present.
In this paper, we describe the computational model and its performance on the
latest generation of shared memory servers from Hewlett Packard. Using compiler
generated threads and OpenMP directives, we have achieved a high degree of
parallelism in the executable, which has made possible several large scale
numerical simulation experiments that study the interesting features of the
cochlear system. We show several results from these simulations, reproducing
some of the basic known characteristics of cochlear mechanics.Comment: 22 pages, 5 figure
The Active Traveling Wave in the Cochlea
A sound stimulus entering the inner ear excites a deformation of the basilar
membrane which travels along the cochlea towards the apex. It is well
established that this wave-like disturbance is amplified by an active system.
Recently, it has been proposed that the active system consists of a set of
self-tuned critical oscillators which automatically operate at an oscillatory
instability. Here, we show how the concepts of a traveling wave and of
self-tuned critical oscillators can be combined to describe the nonlinear wave
in the cochlea.Comment: 5 pages, 2 figure
Making Sense Out of Our Senses
Our senses are essential to our lives and their enjoyment. How do they work? A research institute at Syracuse University is attempting to find out
Analysis of Sound in the Mammalian Ear: A History of Discoveries
The ear performs its extraordinarily fine analysis by mechanical rather than neural means. But much remains to be explored
Response characteristics in the apex of the gerbil cochlea studied through auditory nerve recordings
In this study, we analyze the processing of low-frequency sounds in the cochlear apex through responses of auditory nerve fibers (ANFs) that innervate the apex. Single tones and irregularly spaced tone complexes were used to evoke ANF responses in Mongolian gerbil. The spike arrival times were analyzed in terms of phase locking, peripheral frequency selectivity, group delays, and the nonlinear effects of sound pressure level (SPL). Phase locking to single tones was similar to that in cat. Vector strength was maximal for stimulus frequencies around 500 Hz, decreased above 1 kHz, and became insignificant above 4 to 5 kHz. We used the responses to tone complexes to determine amplitude and phase curves of ANFs having a characteristic frequency (CF) below 5 kHz. With increasing CF, amplitude curves gradually changed from broadly tuned and asymmetric with a steep low-frequency flank to more sharply tuned and asymmetric with a steep high-frequency flank. Over the same CF range, phase curves gradually changed from a concave-upward shape to a concave-downward shape. Phase curves consisted of two or three approximately straight segments. Group delay was analyzed separately for these segments. Generally, the largest group delay was observed near CF. With increasing SPL, most amplitude curves broadened, sometimes accompanied by a downward shift of best frequency, and group delay changed along the entire range of stimulus frequencies. We observed considerable across-ANF variation in the effects of SPL on both amplitude and phase. Overall, our data suggest that mechanical responses in the apex of the cochlea are considerably nonlinear and that these nonlinearities are of a different character than those known from the base of the cochlea
See What You Feel: A Crossmodal Tool for Measuring Haptic Size Illusions
The purpose of this research is to present the employment of a simple-to-use crossmodal method for measuring haptic size illusions. The method, that we call See what you feel, was tested by employing Uznadze’s classic haptic aftereffect in which two spheres physically identical (test spheres) appear different in size after that the hands holding them underwent an adaptation session with other two spheres (adapting spheres), one bigger and the other smaller than the two test spheres. To measure the entity of the illusion, a three-dimensional visual scale was created and participants were asked to find on it the spheres that corresponded in size to the spheres they were holding in their hands out of sight. The method, tested on 160 right-handed participants, is robust and easily understood by participants
Internally coupled ears in living mammals.
It is generally held that the right and left middle ears of mammals are acoustically isolated from each other, such that mammals must rely on neural computation to derive sound localisation cues. There are, however, some unusual species in which the middle ear cavities intercommunicate, in which case each ear might be able to act as a pressure-difference receiver. This could improve sound localisation at lower frequencies. The platypus Ornithorhynchus is apparently unique among mammals in that its tympanic cavities are widely open to the pharynx, a morphology resembling that of some non-mammalian tetrapods. The right and left middle ear cavities of certain talpid and golden moles are connected through air passages within the basicranium; one experimental study on Talpa has shown that the middle ears are indeed acoustically coupled by these means. Having a basisphenoid component to the middle ear cavity walls could be an important prerequisite for the development of this form of interaural communication. Little is known about the hearing abilities of platypus, talpid and golden moles, but their audition may well be limited to relatively low frequencies. If so, these mammals could, in principle, benefit from the sound localisation cues available to them through internally coupled ears. Whether or not they actually do remains to be established experimentally.This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s00422-015-0675-
- …
