539 research outputs found

    Quantum optics with single quantum dot devices

    Get PDF
    A single radiative transition in a single-quantum emitter results in the emission of a single photon. Single quantum dots are single-quantum emitters with all the requirements to generate single photons at visible and near-infrared wavelengths. It is also possible to generate more than single photons with single quantum dots. In this paper we show that single quantum dots can be used to generate non-classical states of light, from single photons to photon triplets. Advanced solid state structures can be fabricated with single quantum dots as their active region. We also show results obtained on devices based on single quantum dots.Peer Reviewe

    Phonon-Assisted Two-Photon Interference from Remote Quantum Emitters

    Get PDF
    Photonic quantum technologies are on the verge offinding applications in everyday life with quantum cryptography andquantum simulators on the horizon. Extensive research has beencarried out to identify suitable quantum emitters and single epitaxialquantum dots have emerged as near-optimal sources of bright, on-demand, highly indistinguishable single photons and entangledphoton-pairs. In order to build up quantum networks, it is essentialto interface remote quantum emitters. However, this is still anoutstanding challenge, as the quantum states of dissimilar“artificialatoms”have to be prepared on-demand with highfidelity and thegenerated photons have to be made indistinguishable in all possibledegrees of freedom. Here, we overcome this major obstacle and show an unprecedented two-photon interference (visibility of 51±5%) from remote strain-tunable GaAs quantum dots emitting on-demand photon-pairs. We achieve this result by exploiting forthefirst time the full potential of a novel phonon-assisted two-photon excitation scheme, which allows for the generation ofhighly indistinguishable (visibility of 71±9%) entangled photon-pairs (fidelity of 90±2%), enables push-button biexciton statepreparation (fidelity of 80±2%) and outperforms conventional resonant two-photon excitation schemes in terms of robustnessagainst environmental decoherence. Our results mark an important milestone for the practical realization of quantum repeatersand complex multiphoton entanglement experiments involving dissimilar artificial atom

    Measurement of g-factor tensor in a quantum dot and disentanglement of exciton spins

    Get PDF
    We perform polarization-resolved magneto-optical measurements on single InAsP quantum dots embedded in an InP nanowire. In order to determine all elements of the electron and hole gg-factor tensors, we measure in magnetic field with different orientations. The results of these measurements are in good agreement with a model based on exchange terms and Zeeman interaction. In our experiment, polarization analysis delivers a powerful tool that not only significantly increases the precision of the measurements, but also enables us to probe the exciton spin state evolution in magnetic fields. We propose a disentangling scheme of heavy-hole exciton spins enabling a measurement of the electron spin T2T_2 time

    Two-photon interference from two blinking quantum emitters

    Full text link
    We investigate the effect of blinking on the two-photon interference measurement from two independent quantum emitters. We find that blinking significantly alters the statistics in the second-order intensity correlation function g(2)(Ď„)^{(2)}(\tau) and the outcome of two-photon interference measurements performed with independent quantum emitters. We theoretically demonstrate that the presence of blinking can be experimentally recognized by a deviation from the gD(2)(0)=0.5^{(2)}_{D}(0)=0.5 value when distinguishable photons impinge on a beam splitter. Our results show that blinking imposes a mandatory cross-check measurement to correctly estimate the degree of indistinguishablility of photons emitted by independent quantum emitters

    Quantum Nature of Light Measured With a Single Detector

    Full text link
    We realized the most fundamental quantum optical experiment to prove the non-classical character of light: Only a single quantum emitter and a single superconducting nanowire detector were used. A particular appeal of our experiment is its elegance and simplicity. Yet its results unambiguously enforce a quantum theory for light. Previous experiments relied on more complex setups, such as the Hanbury-Brown-Twiss configuration, where a beam splitter directs light to two photodetectors, giving the false impression that the beam splitter is required. Our work results in a major simplification of the widely used photon-correlation techniques with applications ranging from quantum information processing to single-molecule detection.Comment: 7 page
    • …
    corecore