8 research outputs found
Calculated Transmission Using a Portable Spectroreflectometer
Under normal circumstances, a spectrophotometer is used to measure transmission of material samples. However, a sample may be too large to fit into the spectrophotometer chamber, or a field inspection may be required. This Technical Publication describes the procedure for using measurements made with a portable spectroreflectometer to calculate transmission. A similar procedure is used to calculate infrared transmission using measurements from a portable infrared reflectometer
Preliminary Analysis of the Gradient Field Imploding Liner Fusion Propulsion Concept
The advancement of human deep space exploration requires the continued development of energetic in-space propulsion systems, advancing from current chemical engines to nuclear thermal rockets to future high energy concepts such as nuclear fusion. This paper presents the initial results of a NASA Innovative Advanced Concepts (NIAC) Phase I study funded to investigate the feasibility of a new pulsed fusion propulsion concept based on the rapid implosion of a fuel target injected at high velocity into a strong stationary magnetic field. The proposed concept takes advantage of the significant advances in terrestrial magneto-inertial fusion designs while attempting to mitigate the most common engineering impediments to in-space propulsion applications. A semi-analytic numerical model used to estimate target compression physics and energy release is presented, leading to estimates for engine performance. A preliminary vehicle design concept is outlined, and representative trajectory analyses for rapid Mars and Saturn missions are provided. The paper concludes with an overview of proposed next steps for theoretical and experimental validation of the concept
Gradient Field Imploding Liner Fusion Propulsion System: NASA Innovative Advanced Concepts Phase I Final Report
The advancement of human deep space exploration requires the continued development of energetic in-space propulsion systems, from current chemical engines to nuclear thermal rockets to future high energy concepts such as nuclear fusion. As NASA embarks on a program to develop near-term nuclear thermal propulsion, this NASA Innovative Advanced Concepts (NIAC) Phase I activity was funded to investigate the feasibility of an innovative approach toward highly energetic pulsed fusion propulsion. Previous concept studies have proposed the conversion of fusion energy for in-space propulsion, ranging from laser-ignited fusion systems such as Gevaltig and VISTA, to the British Interplanetary Society's Daedalus concept and its more recent incarnation under Project Icarus, to steady-state spherical torus fusion systems. Recent NIAC studies have also evaluated several innovative fusion concepts, including the acceleration and compression of field reversed configuration plasmas in time-changing magnetic fields, magnetically driven liners imploding onto plasma targets, and high current z-pinch compression of material liners onto fission-fusion fuel targets. While each of these studies firmly established the potential benefits of fusion systems for interplanetary travel, they also identified significant challenges in successfully engineering such systems for spacecraft propulsion. The concept outlined in this Technical Publication (TP) builds on the lessons learned from these prior activities, approaching the quest for fusion-powered propulsion through an innovative variation of magneto-inertial fusion concepts developed for terrestrial power applications
ndvF, a novel locus located on megaplasmid pRmeSU47b (pEXO) of Rhizobium meliloti, is required for normal nodule development.
Rhizobium meliloti strains carrying either of two overlapping deletions (delta 5408 and delta F114) of the megaplasmid pRmeSU47b form nodules on alfalfa which fail to fix N2 (Fix-). Strains carrying these deletions also fail to fluoresce on media containing calcofluor, indicating a defect in synthesis of the acidic exopolysaccharide (Exo-) of R. meliloti. We have isolated cosmid clones (pTH21 and pTH22) which complement the Fix- but not the Exo- phenotype of the strains carrying the delta 5408 and delta F114 deletions. In addition, cosmid clones which complement the Exo- phenotype fail to complement the Fix- phenotype of these deletions; thus, the Exo- phenotype is not related to the Fix- phenotype. A 5-kb region within a 7.3-kb BamHI restriction fragment was found to be required for complementation of the Fix- phenotype of the delta 5408 and delta F114 deletion strains. Tn5 insertions in the 5-kb region generated a Fix- phenotype when recombined into the wild-type genome. We have designated this locus ndvF, for nodule development. TnphoA mutagenesis of this region generated active alkaline-phosphatase gene fusions, indicating that ndvF encodes extracytoplasmic protein(s). Induction of nodules by the ndvF mutants was delayed by 2 to 3 days compared with induction by the wild-type strain. Light microscopy of nodules elicited by strains carrying the large 150-kb delta F114 deletion, a 12-kb deletion removing ndvF, or an individual ndvF::Tn5 insertion mutation demonstrated that many nodules contained few infected cortical cells, indicating that nodule development was blocked early in the infection process, before the release of bacteria from the infection threads