1,311 research outputs found

    VLA observations of candidate high-mass protostellar objects at 7 mm

    Full text link
    We present radio continuum observations at 7 mm made using the Very Large Array towards three massive star forming regions thought to be in very early stages of evolution selected from the sample of Sridharan et al. (2002). Emission was detected towards all three sources (IRAS 18470-0044, IRAS 19217+1651 and IRAS 23151+5912). We find that in all cases the 7 mm emission corresponds to thermal emission from ionized gas. The regions of ionized gas associated with IRAS 19217+1651 and IRAS 23151+5912 are hypercompact with diameters of 0.009 and 0.0006 pc, and emission measures of 7.0 x 10^8 and 2.3 x 10^9 pc cm^(-6), respectively.Comment: 17 pages, 5 figures, accepted by The Astronomical Journa

    The most massive progenitors of neutron stars: CXO J164710.2-455216

    Full text link
    The evolution leading to the formation of a neutron star in the very young Westerlund 1 star cluster is investigated. The turnoff mass has been estimated to be 35 Msun, indicating a cluster age ~ 3-5 Myr. The brightest X-ray source in the cluster, CXO J164710.2-455216, is a slowly spinning (10 s) single neutron star and potentially a magnetar. Since this source was argued to be a member of the cluster, the neutron star progenitor must have been very massive (M_zams > 40 Msun) as noted by Muno et al. (2006). Since such massive stars are generally believed to form black holes (rather than neutron stars), the existence of this object poses a challenge for understanding massive star evolution. We point out while single star progenitors below M_zams < 20 Msun form neutron stars, binary evolution completely changes the progenitor mass range. In particular, we demonstrate that mass loss in Roche lobe overflow enables stars as massive as 50-80 Msun, under favorable conditions, to form neutron stars. If the very high observed binary fraction of massive stars in Westerlund 1 (> 70 percent) is considered, it is natural that CXO J164710.2-455216 was formed in a binary which was disrupted in a supernova explosion such that it is now found as a single neutron star. Hence, the existence of a neutron star in a given stellar population does not necessarily place stringent constraints on progenitor mass when binary interactions are considered. It is concluded that the existence of a neutron star in Westerlund 1 cluster is fully consistent with the generally accepted framework of stellar evolution.Comment: 5 pages of text and 4 figures (submitted to Astrophysical Journal

    Changes in Nutritional Issues Over the Last 45 Years

    Get PDF
    The prospect of a lunar outpost to conduct science and learn how to live and work off the Earth is exciting. The nutritional sciences will focus on the issues of over all health, with emphasis on skeletal muscle health and prevention of radiation damage. There is a great deal of research needed to determine the nutritional and food component potential for preventing the changes that occur in space flight. Further research is also needed on the interactions of systems and countermeasures, such as protein-amino acid needs for enhancement of muscle protein synthesis while not being detrimental for bone health. The interrelationship between radiation exposure, nutrition, and food components has just begun

    The Nobel Prize as a Reward Mechanism in the Genomics Era: Anonymous Researchers, Visible Managers and the Ethics of Excellence

    Get PDF
    The Human Genome Project (HGP) is regarded by many as one of the major scientific achievements in recent science history, a large-scale endeavour that is changing the way in which biomedical research is done and expected, moreover, to yield considerable benefit for society. Thus, since the completion of the human genome sequencing effort, a debate has emerged over the question whether this effort merits to be awarded a Nobel Prize and if so, who should be the one(s) to receive it, as (according to current procedures) no more than three individuals can be selected. In this article, the HGP is taken as a case study to consider the ethical question to what extent it is still possible, in an era of big science, of large-scale consortia and global team work, to acknowledge and reward individual contributions to important breakthroughs in biomedical fields. Is it still viable to single out individuals for their decisive contributions in order to reward them in a fair and convincing way? Whereas the concept of the Nobel prize as such seems to reflect an archetypical view of scientists as solitary researchers who, at a certain point in their careers, make their one decisive discovery, this vision has proven to be problematic from the very outset. Already during the first decade of the Nobel era, Ivan Pavlov was denied the Prize several times before finally receiving it, on the basis of the argument that he had been active as a research manager (a designer and supervisor of research projects) rather than as a researcher himself. The question then is whether, in the case of the HGP, a research effort that involved the contributions of hundreds or even thousands of researchers worldwide, it is still possible to “individualise” the Prize? The “HGP Nobel Prize problem” is regarded as an exemplary issue in current research ethics, highlighting a number of quandaries and trends involved in contemporary life science research practices more broadly

    Newtonian Hydrodynamics of the Coalescence of Black Holes with Neutron Stars I: Tidally locked binaries with a stiff equation of state

    Get PDF
    We present a detailed study of the hydrodynamical interactions in a Newtonian black hole-neutron star binary during the last stages of inspiral. We consider close binaries which are tidally locked, use a stiff equation of state (with an adiabatic index Gamma=3) throughout, and explore the effect of different initial mass ratios on the evolution of the system. We calculate the gravitational radiation signal in the quadrupole approximation. Our calculations are carried out using a Smooth Particle Hydrodynamics (SPH) code.Comment: Replaces previous version which had figures separate from the text of the paper. Now 47 pages long with 19 embedded figures (the figures are the same, they were renumbered) Uses aaspp4.st

    Interactions of Ar(9+) and metastable Ar(8+) with a Si(100) surface at velocities near the image acceleration limit

    Full text link
    Auger LMM spectra and preliminary model simulations of Ar(9+) and metastable Ar(8+) ions interacting with a clean monocrystalline n-doped Si(100) surface are presented. By varying the experimental parameters, several yet undiscovered spectroscopic features have been observed providing valuable hints for the development of an adequate interaction model. On our apparatus the ion beam energy can be lowered to almost mere image charge attraction. High data acquisition rates could still be maintained yielding an unprecedented statistical quality of the Auger spectra.Comment: 34 pages, 11 figures, http://pikp28.uni-muenster.de/~ducree

    Nova Sco and coalescing low mass black hole binaries as LIGO sources

    Get PDF
    Double neutron star binaries, analogous to the well known Hulse--Taylor pulsar PSR 1913+16, are guaranteed-to-exist sources of high frequency gravitational radiation detectable by LIGO. There is considerable uncertainty in the estimated rate of coalescence of such systems, with conservative estimates of ~1 per million years per galaxy, and optimistic theoretical estimates one or more magnitude larger. Formation rates of low-mass black hole-neutron star binaries may be higher than those of NS-NS binaries, and may dominate the detectable LIGO signal rate. We estimate the enhanced coalescence rate for BH-BH binaries due to weak asymmetric kicks during the formation of low mass black holes like Nova Sco, and find they may contribute significantly to the LIGO signal rate, possibly dominating the phase I detectable signals if the range of BH masses for which there is significant kick is broad enough. For a standard Salpeter IMF, assuming mild natal kicks, we project that the R6 merger rate of BH-BH systems is ~0.5, smaller than that of NS-NS systems. However, the higher chirp mass of these systems produces a signal nearly four times greater, on average, with a commensurate increase in search volume. The BH-BH coalescence channel considered here also predicts that a substantial fraction of BH-BH systems should have at least one component with near-maximal spin (a/M ~ 1).The waveforms produced by the coalescence of such a system should produce a clear spin signature, so this hypothesis could be directly tested by LIGO.Comment: 16 pages, LaTeX/AASTeX, 5 figure
    • 

    corecore