113 research outputs found

    MPWide: a light-weight library for efficient message passing over wide area networks

    Get PDF
    We present MPWide, a light weight communication library which allows efficient message passing over a distributed network. MPWide has been designed to connect application running on distributed (super)computing resources, and to maximize the communication performance on wide area networks for those without administrative privileges. It can be used to provide message-passing between application, move files, and make very fast connections in client-server environments. MPWide has already been applied to enable distributed cosmological simulations across up to four supercomputers on two continents, and to couple two different bloodflow simulations to form a multiscale simulation

    Multiscale computing for science and engineering in the era of exascale performance

    Get PDF
    In this position paper, we discuss two relevant topics: (i) generic multiscale computing on emerging exascale high-performing computing environments, and (ii) the scaling of such applications towards the exascale. We will introduce the different phases when developing a multiscale model and simulating it on available computing infrastructure, and argue that we could rely on it both on the conceptual modelling level and also when actually executing the multiscale simulation, and maybe should further develop generic frameworks and software tools to facilitate multiscale computing. Next, we focus on simulating multiscale models on high-end computing resources in the face of emerging exascale performance levels. We will argue that although applications could scale to exascale performance relying on weak scaling and maybe even on strong scaling, there are also clear arguments that such scaling may no longer apply for many applications on these emerging exascale machines and that we need to resort to what we would call multi-scaling

    The effects of supernovae on the dynamical evolution of binary stars and star clusters

    Full text link
    In this chapter I review the effects of supernovae explosions on the dynamical evolution of (1) binary stars and (2) star clusters. (1) Supernovae in binaries can drastically alter the orbit of the system, sometimes disrupting it entirely, and are thought to be partially responsible for `runaway' massive stars - stars in the Galaxy with large peculiar velocities. The ejection of the lower-mass secondary component of a binary occurs often in the event of the more massive primary star exploding as a supernova. The orbital properties of binaries that contain massive stars mean that the observed velocities of runaway stars (10s - 100s km s1^{-1}) are consistent with this scenario. (2) Star formation is an inherently inefficient process, and much of the potential in young star clusters remains in the form of gas. Supernovae can in principle expel this gas, which would drastically alter the dynamics of the cluster by unbinding the stars from the potential. However, recent numerical simulations, and observational evidence that gas-free clusters are observed to be bound, suggest that the effects of supernova explosions on the dynamics of star clusters are likely to be minimal.Comment: 16 pages, to appear in the 'Handbook of Supernovae', eds. Paul Murdin and Athem Alsabti. This version replaces an earlier version that contained several typo

    Carbogen-induced changes in rat mammary tumour oxygenation reported by near infrared spectroscopy

    Get PDF
    We have evaluated the ability of steady-state, radially-resolved, broad-band near infrared diffuse reflectance spectroscopy to measure carbogen-induced changes in haemoglobin oxygen saturation (SO2) and total haemoglobin concentration in a rat R3230 mammary adenocarcinoma model in vivo. Detectable shifts toward higher saturations were evident in all tumours (n = 16) immediately after the onset of carbogen breathing. The SO2 reached a new equilibrium within 1 min and remained approximately constant during 200–300 s of administration. The return to baseline saturation was more gradual when carbogen delivery was stopped. The degree to which carbogen increased SO2 was variable among tumours, with a tendency for tumours with lower initial SO2 to exhibit larger changes. Tumour haemoglobin concentrations at the time of peak enhancement were also variable. In the majority of cases, haemoglobin concentration decreased in response to carbogen, indicating that increased tumour blood volume was not responsible for the observed elevation in SO2. We observed no apparent relationship between the extent of the change in tumour haemoglobin concentration and the magnitude of the change in the saturation. Near infrared diffuse reflectance spectroscopy provides a rapid, non-invasive means of monitoring spatially averaged changes in tumour haemoglobin oxygen saturation induced by oxygen modifiers. © 1999 Cancer Research Campaig

    Formation of Supermassive Black Holes

    Full text link
    Evidence shows that massive black holes reside in most local galaxies. Studies have also established a number of relations between the MBH mass and properties of the host galaxy such as bulge mass and velocity dispersion. These results suggest that central MBHs, while much less massive than the host (~ 0.1%), are linked to the evolution of galactic structure. In hierarchical cosmologies, a single big galaxy today can be traced back to the stage when it was split up in hundreds of smaller components. Did MBH seeds form with the same efficiency in small proto-galaxies, or did their formation had to await the buildup of substantial galaxies with deeper potential wells? I briefly review here some of the physical processes that are conducive to the evolution of the massive black hole population. I will discuss black hole formation processes for `seed' black holes that are likely to place at early cosmic epochs, and possible observational tests of these scenarios.Comment: To appear in The Astronomy and Astrophysics Review. The final publication is available at http://www.springerlink.co

    Depression and anxiety in relation to catechol-O-methyltransferase Val158Met genotype in the general population: The Nord-Trøndelag Health Study (HUNT)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The catechol-O-methyltransferase (COMT) gene contains a functional polymorphism, Val158Met, which has been linked to anxiety and depression, but previous results are not conclusive. The aim of the present study was to examine the relationship between the Val158Met COMT gene polymorphism and anxiety and depression measured by the Hospital Anxiety and Depression Scale (HADS) in the general adult population.</p> <p>Methods</p> <p>In the Nord-Trøndelag Health Study (HUNT) the association between the Val158Met polymorphism and anxiety and depression was evaluated in a random sample of 5531 individuals. Two different cut off scores (≥ 8 and ≥ 11) were used to identify cases with anxiety (HADS-A) and depression (HADS-D), whereas controls had HADS-A <8 and HADS-D <8.</p> <p>Results</p> <p>The COMT genotype distribution was similar between controls and individuals in the groups with anxiety and depression using cut-off scores of ≥ 8. When utilizing the alternative cut-off score HADS-D ≥ 11, Met/Met genotype and Met allele were less common among men with depression compared to the controls (genotype: p = 0.017, allele: p = 0.006). In the multivariate analysis, adjusting for age and heart disease, depression (HADS-D ≥ 11) was less likely among men with the Met/Met genotype than among men with the Val/Val genotype (OR = 0.37, 95% CI = 0.18–0.76).</p> <p>Conclusion</p> <p>In this population-based study, no clear association between the Val158Met polymorphism and depression and anxiety was revealed. The Met/Met genotype was less likely among men with depression defined as HADS-D ≥ 11, but this may be an incidental finding.</p

    The Formation and Evolution of the First Massive Black Holes

    Full text link
    The first massive astrophysical black holes likely formed at high redshifts (z>10) at the centers of low mass (~10^6 Msun) dark matter concentrations. These black holes grow by mergers and gas accretion, evolve into the population of bright quasars observed at lower redshifts, and eventually leave the supermassive black hole remnants that are ubiquitous at the centers of galaxies in the nearby universe. The astrophysical processes responsible for the formation of the earliest seed black holes are poorly understood. The purpose of this review is threefold: (1) to describe theoretical expectations for the formation and growth of the earliest black holes within the general paradigm of hierarchical cold dark matter cosmologies, (2) to summarize several relevant recent observations that have implications for the formation of the earliest black holes, and (3) to look into the future and assess the power of forthcoming observations to probe the physics of the first active galactic nuclei.Comment: 39 pages, review for "Supermassive Black Holes in the Distant Universe", Ed. A. J. Barger, Kluwer Academic Publisher

    The stellar and sub-stellar IMF of simple and composite populations

    Full text link
    The current knowledge on the stellar IMF is documented. It appears to become top-heavy when the star-formation rate density surpasses about 0.1Msun/(yr pc^3) on a pc scale and it may become increasingly bottom-heavy with increasing metallicity and in increasingly massive early-type galaxies. It declines quite steeply below about 0.07Msun with brown dwarfs (BDs) and very low mass stars having their own IMF. The most massive star of mass mmax formed in an embedded cluster with stellar mass Mecl correlates strongly with Mecl being a result of gravitation-driven but resource-limited growth and fragmentation induced starvation. There is no convincing evidence whatsoever that massive stars do form in isolation. Various methods of discretising a stellar population are introduced: optimal sampling leads to a mass distribution that perfectly represents the exact form of the desired IMF and the mmax-to-Mecl relation, while random sampling results in statistical variations of the shape of the IMF. The observed mmax-to-Mecl correlation and the small spread of IMF power-law indices together suggest that optimally sampling the IMF may be the more realistic description of star formation than random sampling from a universal IMF with a constant upper mass limit. Composite populations on galaxy scales, which are formed from many pc scale star formation events, need to be described by the integrated galactic IMF. This IGIMF varies systematically from top-light to top-heavy in dependence of galaxy type and star formation rate, with dramatic implications for theories of galaxy formation and evolution.Comment: 167 pages, 37 figures, 3 tables, published in Stellar Systems and Galactic Structure, Vol.5, Springer. This revised version is consistent with the published version and includes additional references and minor additions to the text as well as a recomputed Table 1. ISBN 978-90-481-8817-

    Fast spin echo sequences for BOLD functional MRI

    Get PDF
    At higher field strengths, spin echo (SE) functional MRI (fMRI) is an attractive alternative to gradient echo (GE) as the increased weighting towards the microvasculature results in intrinsically better localization of the BOLD signal. Images are free of signal voids but the commonly used echo planar imaging (EPI) sampling scheme causes geometric distortions, and T2* effects often contribute considerably to the signal changes measured upon brain activation. Multiply refocused SE sequences such as fast spin echo (FSE) are essentially artifact free but their application to fast fMRI is usually hindered due to high energy deposition, and long sampling times. In the work presented here, a combination of parallel imaging and partial Fourier acquisition is used to shorten FSE acquisition times to near those of conventional SE-EPI, permitting sampling of eight slices (matrix 64  ×  64) per second. Signal acquisition is preceded by a preparation experiment that aims at increasing the relative contribution of extravascular dynamic averaging to the BOLD signal. Comparisons are made with conventional SE-EPI using a visual stimulation paradigm. While the observed signal changes are approximately 30% lower, most likely due to the absence of T2* contamination, activation size and t-scores are comparable for both methods, suggesting that HASTE fMRI is a viable alternative, particularly if distortion free images are required. Our data also indicate that the BOLD post-stimulus undershoot is most probably attributable to persistent elevated oxygen metabolism rather than to delayed vascular compliance

    The Formation of the First Massive Black Holes

    Full text link
    Supermassive black holes (SMBHs) are common in local galactic nuclei, and SMBHs as massive as several billion solar masses already exist at redshift z=6. These earliest SMBHs may grow by the combination of radiation-pressure-limited accretion and mergers of stellar-mass seed BHs, left behind by the first generation of metal-free stars, or may be formed by more rapid direct collapse of gas in rare special environments where dense gas can accumulate without first fragmenting into stars. This chapter offers a review of these two competing scenarios, as well as some more exotic alternative ideas. It also briefly discusses how the different models may be distinguished in the future by observations with JWST, (e)LISA and other instruments.Comment: 47 pages with 306 references; this review is a chapter in "The First Galaxies - Theoretical Predictions and Observational Clues", Springer Astrophysics and Space Science Library, Eds. T. Wiklind, V. Bromm & B. Mobasher, in pres
    corecore