309 research outputs found

    Analysis of sea ice dynamics

    Get PDF
    The ongoing work has established the basis for using multiyear sea ice concentrations from SMMR passive microwave for studies of largescale advection and convergence/divergence of the Arctic sea ice pack. Comparisons were made with numerical model simulations and buoy data showing qualitative agreement on daily to interannual time scales. Analysis of the 7-year SMMR data set shows significant interannual variations in the total area of multiyear ice. The scientific objective is to investigate the dynamics, mass balance, and interannual variability of the Arctic sea ice pack. The research emphasizes the direct application of sea ice parameters derived from passive microwave data (SMMR and SSMI) and collaborative studies using a sea ice dynamics model. The possible causes of observed interannual variations in the multiyear ice area are being examined. The relative effects of variations in the large scale advection and convergence/divergence within the ice pack on a regional and seasonal basis are investigated. The effects of anomolous atmospheric forcings are being examined, including the long-lived effects of synoptic events and monthly variations in the mean geostrophic winds. Estimates to be made will include the amount of new ice production within the ice pack during winter and the amount of ice exported from the pack

    Satellite-derived ice data sets no. 2: Arctic monthly average microwave brightness temperatures and sea ice concentrations, 1973-1976

    Get PDF
    A summary data set for four years (mid 70's) of Arctic sea ice conditions is available on magnetic tape. The data include monthly and yearly averaged Nimbus 5 electrically scanning microwave radiometer (ESMR) brightness temperatures, an ice concentration parameter derived from the brightness temperatures, monthly climatological surface air temperatures, and monthly climatological sea level pressures. All data matrices are applied to 293 by 293 grids that cover a polar stereographic map enclosing the 50 deg N latitude circle. The grid size varies from about 32 X 32 km at the poles to about 28 X 28 km at 50 deg N. The ice concentration parameter is calculated assuming that the field of view contains only open water and first-year ice with an ice emissivity of 0.92. To account for the presence of multiyear ice, a nomogram is provided relating the ice concentration parameter, the total ice concentration, and the fraction of the ice cover which is multiyear ice

    Matrix partitioning and EOF/principal component analysis of Antarctic Sea ice brightness temperatures

    Get PDF
    A field of measured anomalies of some physical variable relative to their time averages, is partitioned in either the space domain or the time domain. Eigenvectors and corresponding principal components of the smaller dimensioned covariance matrices associated with the partitioned data sets are calculated independently, then joined to approximate the eigenstructure of the larger covariance matrix associated with the unpartitioned data set. The accuracy of the approximation (fraction of the total variance in the field) and the magnitudes of the largest eigenvalues from the partitioned covariance matrices together determine the number of local EOF's and principal components to be joined by any particular level. The space-time distribution of Nimbus-5 ESMR sea ice measurement is analyzed

    Satellite-derived ice data sets no. 1: Antarctic monthly average microwave brightness temperatures and sea-ice concentrations, 1973 - 1976

    Get PDF
    A summary data set concerning 4 years of Antarctic sea-ice conditions was created and is available on magnetic tape. The data were derived from electrically scanning microwave radiometer brightness temperatures and were mapped into a polar stereographic grid enclosing the 50 deg S latitude circle. The grid size varies from about 32 by 32 sq km at the poles to about 28 by 28 sq km at 50 deg S. The microwave brightness temperatures of Antarctic sea ice are predominantly characteristic of first-year ice with an emissivity of 0.92 at 19 GHz frequency. Sea ice concentrations were calculated from the brightness temperature data for each grid element with an algorithm that uses an emissivity value of 0.92 and an ice physical temperature estimate from climatological surface air temperatures. Monthly, multiyear monthly, and yearly maps of brightness temperatures and sea ice concentrations were created for the 4 years, except for 7 months for which useable data were insufficient

    Antarctic Sea Ice variations 1973 - 1975

    Get PDF
    Variations in the extent and concentration of sea ice cover on the Southern Ocean are described for the three-year period 1973-75 using information derived from the Nimbus-5 passive microwave imager

    Microwave emission from snow and glacier ice

    Get PDF
    The microwave brightness temperature for snow fields was studied assuming that the snow cover consists of closely packed scattering spheres which do not interact coherently. The Mie scattering theory was used to compute the volume scattering albedo. It is shown that in the wavelength range from 0.8 to 2.8 cm, most of the micro-radiation emanates from a layer 10 meters or less in thickness. It is concluded that it is possible to determine snow accumulation rates as well as near-surface temperature

    Martian surface physical properties to be derived by radar altimeter on the Mars observer spacecraft

    Get PDF
    The potential is described of a candidate Mars Observer altimeter for determining dielectric properties of Mars regolith. It is pointed out that it is straightforward to use the time between altimeter pulse trains for passive radiometry (hence dielectric properties) and roughness can be derived. Given the mission plan the whole surface can be mapped at least three times, yielding data on seasonal variability

    Dynamic Inland Propagation of Thinning Due to Ice Loss at the Margins of the Greenland Ice Sheet

    Get PDF
    Mass-balance analysis of the Greenland ice sheet based on surface elevation changes observed by the European Remote-sensing Satellite (ERS) (1992-2002) and Ice, Cloud and land Elevation Satellite (ICESat) (2003-07) indicates that the strongly increased mass loss at lower elevations (<2000 m) of the ice sheet, as observed during 2003-07, appears to induce interior ice thinning at higher elevations. In this paper, we perform a perturbation experiment with a three-dimensional anisotropic ice-flow model (AIF model) to investigate this upstream propagation. Observed thinning rates in the regions below 2000m elevation are used as perturbation inputs. The model runs with perturbation for 10 years show that the extensive mass loss at the ice-sheet margins does in fact cause interior thinning on short timescales (i.e. decadal). The modeled pattern of thinning over the ice sheet agrees with the observations, which implies that the strong mass loss since the early 2000s at low elevations has had a dynamic impact on the entire ice sheet. The modeling results also suggest that even if the large mass loss at the margins stopped, the interior ice sheet would continue thinning for 300 years and would take thousands of years for full dynamic recovery
    corecore