864 research outputs found

    PaRiS: Causally Consistent Transactions with Non-blocking Reads and Partial Replication

    Get PDF
    Geo-replicated data platforms are at the backbone of several large-scale online services. Transactional Causal Consistency (TCC) is an attractive consistency level for building such platforms. TCC avoids many anomalies of eventual consistency, eschews the synchronization costs of strong consistency, and supports interactive read-write transactions. Partial replication is another attractive design choice for building geo-replicated platforms, as it increases the storage capacity and reduces update propagation costs. This paper presents PaRiS, the first TCC system that supports partial replication and implements non-blocking parallel read operations, whose latency is paramount for the performance of read-intensive applications. PaRiS relies on a novel protocol to track dependencies, called Universal Stable Time (UST). By means of a lightweight background gossip process, UST identifies a snapshot of the data that has been installed by every DC in the system. Hence, transactions can consistently read from such a snapshot on any server in any replication site without having to block. Moreover, PaRiS requires only one timestamp to track dependencies and define transactional snapshots, thereby achieving resource efficiency and scalability. We evaluate PaRiS on a large-scale AWS deployment composed of up to 10 replication sites. We show that PaRiS scales well with the number of DCs and partitions, while being able to handle larger data-sets than existing solutions that assume full replication. We also demonstrate a performance gain of non-blocking reads vs. a blocking alternative (up to 1.47x higher throughput with 5.91x lower latency for read-dominated workloads and up to 1.46x higher throughput with 20.56x lower latency for write-heavy workloads)

    Okapi: Causally Consistent Geo-Replication Made Faster, Cheaper and More Available

    Get PDF
    Okapi is a new causally consistent geo-replicated key- value store. Okapi leverages two key design choices to achieve high performance. First, it relies on hybrid logical/physical clocks to achieve low latency even in the presence of clock skew. Second, Okapi achieves higher resource efficiency and better availability, at the expense of a slight increase in update visibility latency. To this end, Okapi implements a new stabilization protocol that uses a combination of vector and scalar clocks and makes a remote update visible when its delivery has been acknowledged by every data center. We evaluate Okapi with different workloads on Amazon AWS, using three geographically distributed regions and 96 nodes. We compare Okapi with two recent approaches to causal consistency, Cure and GentleRain. We show that Okapi delivers up to two orders of magnitude better performance than GentleRain and that Okapi achieves up to 3.5x lower latency and a 60% reduction of the meta-data overhead with respect to Cure

    Positive balancing service by solar virtual power plants

    Get PDF
    During the past years, a large amount of photovoltaic (PV) capacity has been installed in Belgium. The main driver for this was the abundant government support (GreenPower Certicates). However, during the last few years, the support for new installations has been withdrawn and new PV capacity ceased. In previous research, it has been proven that selling PV energy of existing plants directly on the wholesale market is not feasible due to the large share of green power certicates awarded to these plants. However, the price of green power certicates has dropped signicantly and hence the balance between certicate and commodity revenue is restored. This paper investigates the possibility of providing positive balancing services to the transmission system operator by aggregating solar power in a technical Virtual Power Plant. The paper concludes that it seems not interesting, neither economically nor energetically, to keep solar plants solely for positive balancing purposes. Combination of solar power with other sources or consumers can however be profitable, as solar power is quickly switched in case it is needed to react fast

    Drivers, bottlenecks and opportunities for virtual power plants in the Belgian electricity system

    Get PDF

    Smart microgrids and virtual power plants in a hierarchical control structure

    Get PDF
    In order to achieve a coordinated integration of distributed energy resources in the electrical network, an aggregation of these resources is required. Microgrids and virtual power plants (VPPs) address this issue. Opposed to VPPs, microgrids have the functionality of islanding, for which specific control strategies have been developed. These control strategies are classified under the primary control strategies. Microgrid secondary control deals with other aspects such as resource allocation, economic optimization and voltage profile improvements. When focussing on the control-aspects of DER, VPP coordination is similar with the microgrid secondary control strategy, and thus, operates at a slower time frame as compared to the primary control and can take full advantage of the available communication provided by the overlaying smart grid. Therefore, the feasibility of the microgrid secondary control for application in VPPs is discussed in this paper. A hierarchical control structure is presented in which, firstly, smart microgrids deal with local issues in a primary and secondary control. Secondly, these microgrids are aggregated in a VPP that enables the tertiary control, forming the link with the electricity markets and dealing with issues on a larger scale
    corecore