38 research outputs found

    Modulation of nucleotide metabolism by picornaviruses

    Get PDF
    Viruses actively reprogram the metabolism of the host to ensure the availability of sufficient building blocks for virus replication and spreading. However, relatively little is known about how picornaviruses-a large family of small, non-enveloped positive-strand RNA viruses-modulate cellular metabolism for their own benefit. Here, we studied the modulation of host metabolism by coxsackievirus B3 (CVB3), a member of the enterovirus genus, and encephalomyocarditis virus (EMCV), a member of the cardiovirus genus, using steady-state as well as 13C-glucose tracing metabolomics. We demonstrate that both CVB3 and EMCV increase the levels of pyrimidine and purine metabolites and provide evidence that this increase is mediated through degradation of nucleic acids and nucleotide recycling, rather than upregulation of de novo synthesis. Finally, by integrating our metabolomics data with a previously acquired phosphoproteomics dataset of CVB3-infected cells, we identify alterations in phosphorylation status of key enzymes involved in nucleotide metabolism, providing insight into the regulation of nucleotide metabolism during infection

    Assessment of Kinome-wide Activity Remodeling Upon Picornavirus Infection

    Get PDF
    Picornaviridae represent a large family of single-stranded positive RNA viruses of which different members can infect both humans and animals. These include the enteroviruses (e.g., poliovirus, coxsackievirus, and rhinoviruses) as well as the cardioviruses (e.g., encephalomyocarditis virus (EMCV)). Picornaviruses have evolved to interact with, use, and/or evade cellular host systems to create the optimal environment for replication and spreading. It is known that viruses modify kinase activity during infection, but a proteome-wide overview of the (de)regulation of cellular kinases during picornavirus infection is lacking. To study the kinase activity landscape during picornavirus infection, we here applied dedicated targeted mass spectrometry-based assays covering ∼40% of the human kinome. Our data show that upon infection, kinases of the MAPK pathways become activated (e.g., ERK1/2, RSK1/2, JNK1/2/3, p38), while kinases involved in regulating the cell cycle (e.g., CDK1/2, GWL, DYRK3) become inactivated. Additionally, we observed the activation of CHK2, an important kinase involved in the DNA damage response. Using pharmacological kinase inhibitors, we demonstrate that several of these activated kinases are essential for the replication of EMCV. Altogether, the data provide a quantitative understanding of the regulation of kinome activity induced by picornavirus infection, providing a resource important for developing novel antiviral therapeutic interventions

    Rational design of highly potent broad-spectrum enterovirus inhibitors targeting the nonstructural protein 2C

    Get PDF
    There is a great need for antiviral drugs to treat enterovirus (EV) and rhinovirus (RV) infections, which can be severe and occasionally life-threatening. The conserved nonstructural protein 2C, which is an AAA+ ATPase, is a promising target for drug development. Here, we present a structure-activity relationship study of a previously identified compound that targets the 2C protein of EV-A71 and several EV-B species members, but not poliovirus (PV) (EV-C species). This compound is structurally related to the Food and Drug Administration (FDA)-approved drug fluoxetine—which also targets 2C—but has favorable chemical properties. We identified several compounds with increased antiviral potency and broadened activity. Four compounds showed broad-spectrum EV and RV activity and inhibited contemporary strains of emerging EVs of public health concern, including EV-A71, coxsackievirus (CV)-A24v, and EV-D68. Importantly, unlike (S)-fluoxetine, these compounds are no longer neuroactive. By raising resistant EV-A71, CV-B3, and EV-D68 variants against one of these inhibitors, we identified novel 2C resistance mutations. Reverse engineering of these mutations revealed a conserved mechanism of resistance development. Resistant viruses first acquired a mutation in, or adjacent to, the α2 helix of 2C. This mutation disrupted compound binding and provided drug resistance, but this was at the cost of viral fitness. Additional mutations at distantly localized 2C residues were then acquired to increase resistance and/or to compensate for the loss of fitness. Using computational methods to identify solvent accessible tunnels near the α2 helix in the EV-A71 and PV 2C crystal structures, a conserved binding pocket of the inhibitors is proposed

    Vemurafenib Inhibits Acute and Chronic Enterovirus Infection by Affecting Cellular Kinase Phosphatidylinositol 4-Kinase Type IIIb

    Get PDF
    Enteroviruses are one of the most abundant viruses causing mild to serious acute infections in humans and also contributing to chronic diseases like type 1 diabetes. Presently, there are no approved antiviral drugs against enteroviruses. Here, we studied the potency of vemurafenib, an FDA-Approved RAF kinase inhibitor for treating BRAFV600E mutant-related melanoma, as an antiviral against enteroviruses. We showed that vemurafenib prevented enterovirus translation and replication at low micromolar dosage in an RAF/MEK/ERK-independent manner. Vemurafenib was effective against group A, B, and C enteroviruses, as well as rhinovirus, but not parechovirus or more remote viruses such as Semliki Forest virus, adenovirus, and respiratory syncytial virus. The inhibitory effect was related to a cellular phosphatidylinositol 4-kinase type IIIb (PI4KB), which has been shown to be important in the formation of enteroviral replication organelles. Vemurafenib prevented infection efficiently in acute cell models, eradicated infection in a chronic cell model, and lowered virus amounts in pancreas and heart in an acute mouse model. Altogether, instead of acting through the RAF/MEK/ERK pathway, vemurafenib affects the cellular PI4KB and, hence, enterovirus replication, opening new possibilities to evaluate further the potential of vemurafenib as a repurposed drug in clinical care. IMPORTANCE Despite the prevalence and medical threat of enteroviruses, presently, there are no antivirals against them. Here, we show that vemurafenib, an FDA-Approved RAF kinase inhibitor for treating BRAFV600E mutant-related melanoma, prevents enterovirus translation and replication. Vemurafenib shows efficacy against group A, B, and C enteroviruses, as well as rhinovirus, but not parechovirus or more remote viruses such as Semliki Forest virus, adenovirus, and respiratory syncytial virus. The inhibitory effect acts through cellular phosphatidylinositol 4-kinase type IIIb (PI4KB), which has been shown to be important in the formation of enteroviral replication organelles. Vemurafenib prevents infection efficiently in acute cell models, eradicates infection in a chronic cell model, and lowers virus amounts in pancreas and heart in an acute mouse model. Our findings open new possibilities to develop drugs against enteroviruses and give hope for repurposing vemurafenib as an antiviral drug against enteroviruses

    Synthesis, Structure–Activity Relationships, and Antiviral Profiling of 1-Heteroaryl-2-Alkoxyphenyl Analogs as Inhibitors of SARS-CoV-2 Replication

    Get PDF
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, has led to a pandemic, that continues to be a huge public health burden. Despite the availability of vaccines, there is still a need for small-molecule antiviral drugs. In an effort to identify novel and drug-like hit matter that can be used for subsequent hit-to-lead optimization campaigns, we conducted a high-throughput screening of a 160 K compound library against SARS-CoV-2, yielding a 1-heteroaryl-2-alkoxyphenyl analog as a promising hit. Antiviral profiling revealed this compound was active against various beta-coronaviruses and preliminary mode-of-action experiments demonstrated that it interfered with viral entry. A systematic structure–activity relationship (SAR) study demonstrated that a 3- or 4-pyridyl moiety on the oxadiazole moiety is optimal, whereas the oxadiazole can be replaced by various other heteroaromatic cycles. In addition, the alkoxy group tolerates some structural diversity

    Identification of Z-Tyr-Ala-CHN 2, a Cathepsin L Inhibitor with Broad-Spectrum Cell-Specific Activity against Coronaviruses, including SARS-CoV-2.

    Get PDF
    The ongoing COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is partly under control by vaccination. However, highly potent and safe antiviral drugs for SARS-CoV-2 are still needed to avoid development of severe COVID-19. We report the discovery of a small molecule, Z-Tyr-Ala-CHN 2, which was identified in a cell-based antiviral screen. The molecule exerts sub-micromolar antiviral activity against SARS-CoV-2, SARS-CoV-1, and human coronavirus 229E. Time-of-addition studies reveal that Z-Tyr-Ala-CHN 2 acts at the early phase of the infection cycle, which is in line with the observation that the molecule inhibits cathepsin L. This results in antiviral activity against SARS-CoV-2 in VeroE6, A549-hACE2, and HeLa-hACE2 cells, but not in Caco-2 cells or primary human nasal epithelial cells since the latter two cell types also permit entry via transmembrane protease serine subtype 2 (TMPRSS2). Given their cell-specific activity, cathepsin L inhibitors still need to prove their value in the clinic; nevertheless, the activity profile of Z-Tyr-Ala-CHN 2 makes it an interesting tool compound for studying the biology of coronavirus entry and replication

    Ovariectomy increases RANKL protein expression in bone marrow adipocytes of C3H/HeJ mice

    No full text
    Estrogen deficiency induces bone loss by increasing bone resorption, in part through upregulation of receptor activator of nuclear factor-κB ligand (RANKL). RANKL is secreted by osteoblasts and osteocytes, but more recently bone marrow (pre)adipocytes have also been shown to express RANKL. Estrogen deficiency increases bone marrow adipose tissue (BMAT). The aim of this study was to determine the effect of ovariectomy (OVX) on RANKL protein expression by bone marrow adipocytes in C3H/HeJ mice. Fourteen-week-old female C3H/HeJ mice (n = 20) were randomized to sham surgery (Sham) or OVX. After 4 wk animals were euthanized. BMAT volume fraction (BMAT volume/marrow volume) was quantified by polyoxometalate-based contrast-enhanced nano-computed tomography. The percentage of RANKL-positive bone marrow adipocytes (RANKL-positive bone marrow adipocytes/total adipocytes) and the percentage of RANKL-positive osteoblasts covering the bone surface (bone surface covered in RANKL-positive osteoblasts/total bone surface) were quantified in the distal metaphysis of immunohistochemically stained sections of the left femur. The effects of OVX were analyzed by Student's t test or Mann-Whitney U test. RANKL was detected in osteoblasts, osteocytes, and bone marrow adipocytes. OVX significantly increased mean percentage of RANKL-positive bone marrow adipocytes [mean (SD): Sham 42 (18)%; OVX 64 (12)%; P = 0.029] as well as BMAT volume/marrow volume [median (interquartile range): Sham 1.4 (4.9)%; OVX 7.2 (7.3)%; P = 0.008] compared with Sham. We show that OVX increased both the percentage of RANKL-positive bone marrow adipocytes and the total BMAT volume fraction in C3H/HeJ mice. Therefore, RANKL produced by bone marrow adipocytes could be an important contributor to OVX-induced bone loss in C3H/HeJ mice.status: publishe

    Ovariectomy increases RANKL protein expression in bone marrow adipocytes of C3H/HeJ mice

    No full text
    Estrogen deficiency induces bone loss by increasing bone resorption, in part through upregulation of receptor activator of nuclear factor-kappa B ligand (RANKL). RANKL is secreted by osteoblasts and osteocytes, but more recently bone marrow (pre)adipocytes have also been shown to express RANKL. Estrogen deficiency increases bone marrow adipose tissue (BMAT). The aim of this study was to determine the effect of ovariectomy (OVX) on RANKL protein expression by bone marrow adipocytes in C3H/HeJ mice. Fourteen-week-old female C3H/HeJ mice (n = 20) were randomized to sham surgery (Sham) or OVX. After 4 wk animals were euthanized. BMAT volume fraction (BMAT volume/marrow volume) was quantified by polyoxometalate-based contrast-enhanced nano-computed tomography. The percentage of RANKL-positive bone marrow adipocytes (RANKL-positive bone marrow adipocytes/total adipocytes) and the percentage of RANKL-positive osteoblasts covering the bone surface (bone surface covered in RANKL-positive osteoblasts/total bone surface) were quantified in the distal metaphysis of immunohistochemically stained sections of the left femur. The effects of OVX were analyzed by Student's t test or Mann-Whitney U test. RANKL was detected in osteoblasts, osteocytes, and bone marrow adipocytes. OVX significantly increased mean percentage of RANKL-positive bone marrow adipocytes [mean (SD): Sham 42 (18)%; OVX 64 (12)%; P = 0.029] as well as BMAT volume/marrow volume [median (interquartile range): Sham 1.4 (4.9)%; OVX 7.2 (7.3)%; P = 0.008] compared with Sham. We show that OVX increased both the percentage of RANKL-positive bone marrow adipocytes and the total BMAT volume fraction in C3H/HeJ mice. Therefore, RANKL produced by bone marrow adipocytes could be an important contributor to OVX-induced bone loss in C3H/HeJ mice.Bone and mineral researc
    corecore