496 research outputs found

    Spectrum Orbit Utilization Program Documentation: SOUP5 Version 3.8 User's Manual, Volume 2, Appendices a Through G

    Get PDF
    The appendixes of the user manual are presented. Input forms which may be used to prepare data for the SOUP5V3.4 of the R2BCSAT-83 data base are given. The IBM job control language which can be used to run the SOUP5 system from a magnetic tape is described. Copies of a run using the delivered tape and IBM OS/MVS Job Control Language card deck are illustrated. Numerical limits on scenario data requests are listed. Error handling, error messages and editing procedures are also listed. Instructions as to how to enter a protection ratio template are given. And relation between PARC prameter, channelization, channel families, and interference categories are also listed

    An atypical receiver domain controls the dynamic polar localization of the Myxococcus xanthus social motility protein FrzS

    Get PDF
    The Myxococcus xanthus FrzS protein transits from pole-to-pole within the cell, accumulating at the pole that defines the direction of movement in social (S) motility. Here we show using atomic-resolution crystallography and NMR that the FrzS receiver domain (RD) displays the conserved switch Tyr102 in an unusual conformation, lacks the conserved Asp phosphorylation site, and fails to bind Mg2+ or the phosphoryl analogue, Mg2+·BeF3. Mutation of Asp55, closest to the canonical site of RD phosphorylation, showed no motility phenotype in vivo, demonstrating that phosphorylation at this site is not necessary for domain function. In contrast, the Tyr102Ala and His92Phe substitutions on the canonical output face of the FrzS RD abolished S-motility in vivo. Single-cell fluorescence microscopy measurements revealed a striking mislocalization of these mutant FrzS proteins to the trailing cell pole in vivo. The crystal structures of the mutants suggested that the observed conformation of Tyr102 in the wild-type FrzS RD is not sufficient for function. These results support the model that FrzS contains a novel ‘pseudo-receiver domain’ whose function requires recognition of the RD output face but not Asp phosphorylation

    Proceedings of a Summer Institute in Water Resources: Volume 4 - General Principles of Water Resources Planning

    Get PDF
    Foreward: Recognizing the need for training of individuals to meet the rapidly rising problems connected with water resources development, Utah State University, with National Science Foundation support, organized a Summer Institute in Water Resources for college teachers. it was hoped that participants carefully selected from all regions of the country would receive additional insight and stimulation to improve and enlarge water resources training programs at their own institutions. Thus, the accelerated dissemination of such knowledge on a national scale could be facilitated. Realizing further that the key to a successful institute of this nature lay in the excellence of its staff, efforts were made to obtain instructors with intimate knowledge and broad experience int he subject matter area they were asked to rpesent. In nearly every case those selected willingly accepted the invitation to participate, although this meant considerable monetary sacrifice and major adjustment of busy schedules. The subject matter treated paralleled regular offerings listed in the University catalog and is considered to be central or core to a water resources planning and management training program. one course treated the philosophical, historical, institutional, political, and legal aspects of water development. The responsibility for this course was shared jointly with Cleve H. Milligan, Charles E. Corker, and Wayne D. Criddle. The second course considered the principles of water resources economics and was presented by B. Delworth Gardner. The third course dealt with concepts of water quality management and was under the direction of P. H. McGauhey. The final course was on principles and procedures of regional resources planning and was presented jointly by Aaron Wiener, W. R. Derrick Sewell, and Harvey O. Banks. Having assembled a distinguished and diversified staff to present some of the best current professional thinking in the topics suggested in the preceding paragraph, it was felt most appropriate to attempt to put their lectures into writing. A proceedings of the Institute would have considerable utility beyong the Institute itself. Hence, the instructors were encouraged to prepare written material for the proceedings and were given secretarial and other assistance to aid them. This material has been organized according to the four major courses and is issued in four comanion volumes. Clearly, this has been a prodigious effort which required Institute staff and others to go the extra mile. Special thanks and recognition are due Mrs. Dorothy Riley who not only typed the entire proceedings but also attended to many details necessary for the successfult operations of the Institute. Jay M. Bagley served as director of the Institute and assumed a general coordinating and editing role in the development of these proceedings

    Localized states in strong magnetic field: resonant scattering and the Dicke effect

    Full text link
    We study the energy spectrum of a system of localized states coupled to a 2D electron gas in strong magnetic field. If the energy levels of localized states are close to the electron energy in the plane, the system exhibits a kind of collective behavior analogous to the Dicke effect in optics. The latter manifests itself in ``trapping'' of electronic states by localized states. At the same time, the electronic density of states develops a gap near the resonance. The gap and the trapping of states appear to be complementary and reflect an intimate relation between the resonant scattering and the Dicke effect. We reveal this relation by presenting the exact solution of the problem for the lowest Landau level. In particular, we show that in the absence of disorder the system undergoes a phase transition at some critical concentration of localized states.Comment: 28 pages + 9 fig

    High-throughput CRISPRi phenotyping identifies new essential genes in Streptococcus pneumoniae.

    Get PDF
    Genome-wide screens have discovered a large set of essential genes in the opportunistic human pathogen <i>Streptococcus pneumoniae</i> However, the functions of many essential genes are still unknown, hampering vaccine development and drug discovery. Based on results from transposon sequencing (Tn-seq), we refined the list of essential genes in <i>S. pneumoniae</i> serotype 2 strain D39. Next, we created a knockdown library targeting 348 potentially essential genes by CRISPR interference (CRISPRi) and show a growth phenotype for 254 of them (73%). Using high-content microscopy screening, we searched for essential genes of unknown function with clear phenotypes in cell morphology upon CRISPRi-based depletion. We show that SPD_1416 and SPD_1417 (renamed to MurT and GatD, respectively) are essential for peptidoglycan synthesis, and that SPD_1198 and SPD_1197 (renamed to TarP and TarQ, respectively) are responsible for the polymerization of teichoic acid (TA) precursors. This knowledge enabled us to reconstruct the unique pneumococcal TA biosynthetic pathway. CRISPRi was also employed to unravel the role of the essential Clp-proteolytic system in regulation of competence development, and we show that ClpX is the essential ATPase responsible for ClpP-dependent repression of competence. The CRISPRi library provides a valuable tool for characterization of pneumococcal genes and pathways and revealed several promising antibiotic targets

    Quantum dynamics in strong fluctuating fields

    Full text link
    A large number of multifaceted quantum transport processes in molecular systems and physical nanosystems can be treated in terms of quantum relaxation processes which couple to one or several fluctuating environments. A thermal equilibrium environment can conveniently be modelled by a thermal bath of harmonic oscillators. An archetype situation provides a two-state dissipative quantum dynamics, commonly known under the label of a spin-boson dynamics. An interesting and nontrivial physical situation emerges, however, when the quantum dynamics evolves far away from thermal equilibrium. This occurs, for example, when a charge transferring medium possesses nonequilibrium degrees of freedom, or when a strong time-dependent control field is applied externally. Accordingly, certain parameters of underlying quantum subsystem acquire stochastic character. Herein, we review the general theoretical framework which is based on the method of projector operators, yielding the quantum master equations for systems that are exposed to strong external fields. This allows one to investigate on a common basis the influence of nonequilibrium fluctuations and periodic electrical fields on quantum transport processes. Most importantly, such strong fluctuating fields induce a whole variety of nonlinear and nonequilibrium phenomena. A characteristic feature of such dynamics is the absence of thermal (quantum) detailed balance.Comment: review article, Advances in Physics (2005), in pres

    Prognostic implications of the Quebec Task Force classification of back-related leg pain: An analysis of longitudinal routine clinical data

    Get PDF
    Background: Low back pain (LBP) patients with related leg pain have a more severe profile than those with local LBP and a worse prognosis. Pain location above or below the knee and the presence of neurological signs differentiate patients with different profiles, but knowledge about the prognostic value of these subgroups is sparse. The objectives of this study were (1) to investigate whether subgroups consisting of patients with Local LBP only, LBP + leg pain above the knee, LBP + leg pain below the knee, and LBP + leg pain and neurological signs had different prognoses, and (2) to determine if this was explained by measured baseline factors. Methods. Routine clinical data were collected during the first visit to an outpatient department and follow-ups were performed after 3 and 12 months. Patients were divided into the four subgroups and associations between subgroups and the outcomes of activity limitation, global perceived effect (GPE) after 3 months, and sick leave after 3 months were tested by means of generalised estimating equations. Models were univariate (I), adjusted for duration (II), and adjusted for all baseline differences (III). Results: A total of 1,752 patients were included, with a 76% 3-month and 70% 12-month follow-up. Subgroups were associated with activity limitation in all models (p < 0.001). Local LBP had the least and LBP + neurological signs the most severe limitations at all time-points, although patients with neurological signs improved the most. Associations with GPE after 3 months were only significant in Model I. Subgroups were associated with sick leave after 3 months in model I and II, with sick leave being most frequent in the subgroup with neurological signs. No significant differences were found in any pairwise comparisons of patients with leg pain above or below the knee. Conclusions: Subgrouping LBP patients, based on pain location and neurological signs, was associated with activity limitation and sick leave, but not with GPE. The presence of neurological signs and pain in the leg both have prognostic implications but whether that leg pain without neurological signs is above or below the knee does not

    Active Brownian Particles. From Individual to Collective Stochastic Dynamics

    Full text link
    We review theoretical models of individual motility as well as collective dynamics and pattern formation of active particles. We focus on simple models of active dynamics with a particular emphasis on nonlinear and stochastic dynamics of such self-propelled entities in the framework of statistical mechanics. Examples of such active units in complex physico-chemical and biological systems are chemically powered nano-rods, localized patterns in reaction-diffusion system, motile cells or macroscopic animals. Based on the description of individual motion of point-like active particles by stochastic differential equations, we discuss different velocity-dependent friction functions, the impact of various types of fluctuations and calculate characteristic observables such as stationary velocity distributions or diffusion coefficients. Finally, we consider not only the free and confined individual active dynamics but also different types of interaction between active particles. The resulting collective dynamical behavior of large assemblies and aggregates of active units is discussed and an overview over some recent results on spatiotemporal pattern formation in such systems is given.Comment: 161 pages, Review, Eur Phys J Special-Topics, accepte
    corecore