125 research outputs found

    X-shooter spectroscopy of young stellar objects in Lupus: Lithium, iron, and barium elemental abundances

    Get PDF
    With the purpose of performing a homogeneous determination of elemental abundances for members of the Lupus T association, we analyzed three chemical elements: lithium, iron, and barium. The aims were: to derive the Li abundance for ~90% of known class II stars in the Lupus I, II, III, IV clouds; to perform chemical tagging of a region where few Fe abundance measurements have been obtained in the past, and no determination of the Ba content has been done up to now. We also investigated possible Ba enhancement, as this element has become increasingly interesting in the last years following the evidence of Ba over-abundance in young clusters, the origin of which is still unknown. Using X-shooter@VLT, we analyzed the spectra of 89 cluster members, both class II and III stars. We measured the strength of the Li line and derived the abundance of this element through equivalent width measurements and curves of growth. For six class II stars we also measured the Fe and Ba abundances using the spectral synthesis and the code MOOG. The veiling contribution was taken into account for all three elements. We find a dispersion in the strength of the Li line at low Teff and identify three targets with severe Li depletion. The nuclear age inferred for these highly Li-depleted stars is around 15 Myr, which exceeds the isochronal one. As in other star-forming regions, no metal-rich members are found in Lupus, giving support to a recent hypothesis that the Fe abundance distribution of most of the nearby young regions could be the result of a common and widespread star formation episode involving the Galactic thin disk. We find that Ba is over-abundant by ~0.7 dex with respect to the Sun. Since current theoretical models cannot reproduce this Ba abundance pattern, we investigated whether this unusually large Ba content might be related to effects due to stellar parameters, stellar activity, and accretion.Comment: 15 pages, 14 figures, 3 tables; accepted for publication in A&A; abstract shortene

    Early marker of ocular neurodegeneration in children and adolescents with type 1 diabetes: the contributing role of polymorphisms in mir146a and mir128a genes

    Get PDF
    Background: Early ocular neurodegenerative signs of diabetic neuropathy (DN) can be found in children and adolescents with type 1 diabetes (T1D). No data are available on the potential role of polymorphisms in miRNAs genes in predisposing T1D subjects to these signs. Aims: To determine whether MIR146A rs2910164 and MIR128A rs11888095 polymorphisms are associated with early retinal and corneal neurodegenerative changes in pediatric patients with T1D. Methods: A total of 140 T1D children/adolescents underwent spectral domain-optical coherence tomography (SD-OCT) and in vivo confocal microscopy (IVCM) with measurement of retinal and corneal nerve fiber parameters. Risk factors for diabetes complications (diabetes duration, blood pressure, HbA1c) were recorded. Genotyping of rs2910164 and rs1188095 SNPs and genotype-phenotype association analysis were performed. Results: The C allele of rs2910164 in MIR146A was associated with higher values of IVCM parameters and minimum rim width (MRW) of the peripapillary region of optic nerve head measured in the retina, whereas the T allele of rs1188095 in MIR128A was associated with a significant impairment of them. Multiple regression analysis showed that MIR146A and MIR128A polymorphisms were significantly associated with corneal nerve fiber length (beta = 0.225 and - 0.204, respectively) and other IVCM parameters, independently from age, diabetes duration, HbA1c and systolic blood pressure percentile. Similar results were found for MRW (beta = 0.213 and - 0.286, respectively). Conclusions: These results provide new insight into the genetic predisposition to DN showing that two polymorphisms in MIR146A and MIR128A genes could significantly contribute to the development of early ocular preclinical signs of DN

    Haplotypes of the genes (GCK and G6PC2) underlying the glucose/glucose-6-phosphate cycle are associated with pancreatic beta cell glucose sensitivity in patients with newly diagnosed type 2 diabetes from the VNDS study (VNDS 11)

    Get PDF
    Background: Elevated fasting plasma glucose has been associated with increased risk for development of type 2 diabetes (T2D). The balance between glucokinase (GCK) and glucose-6-phosphate catalytic subunit 2 (G6PC2) activity are involved in glucose homeostasis through glycolytic flux, and subsequent insulin secretion. Aim: In this study, we evaluated the association between the genetic variability of G6PC2 and GCK genes and T2D-related quantitative traits. Methods: In 794 drug-naïve, GADA-negative, newly diagnosed T2D patients (VNDS; NTC01526720) we performed: genotyping of 6 independent tag-SNPs within GCK gene and 5 tag-SNPs within G6PC2 gene; euglycaemic insulin clamp to assess insulin sensitivity; OGTT to estimate beta-cell function (derivative and proportional control; DC, PC) by mathematical modeling. Genetic association analysis has been conducted using Plink software. Results: Two SNPs within GCK gene (rs882019 and rs1303722) were associated to DC in opposite way (both p < 0.004). Two G6PC2 variants (rs13387347 and rs560887) were associated to both parameters of insulin secretion (DC and PC) and to fasting C-peptide levels (all p < 0.038). Moreover, subjects carrying the A allele of rs560887 showed higher values of 2h-plasma glucose (2hPG) (p = 0.033). Haplotype analysis revealed that GCK (AACAAA) haplotype was associated to decreased fasting C-peptide levels, whereas, the most frequent haplotype of G6PC2 (GGAAG) was associated with higher fasting C-peptide levels (p = 0.001), higher PC (β = 6.87, p = 0.022) and the lower 2hPG (p = 0.012). Conclusion: Our findings confirmed the role of GCK and G6PC2 in regulating the pulsatility in insulin secretion thereby influencing insulin-signaling and leading to a gradual modulation in glucose levels in Italian patients with newly diagnosed T2D

    Associations between higher plasma ferritin and hepcidin levels with liver stiffness in patients with type 2 diabetes: An exploratory study

    Get PDF
    Background: Currently, there is no information about the association between circulating levels of ferritin and hepcidin and liver fibrosis in patients with type 2 diabetes mellitus (T2DM) and non-alcoholic fatty liver disease (NAFLD). Methods: We enrolled 153 patients with T2DM with no known liver diseases, who consecutively attended our diabetes outpatient service and who underwent liver ultrasonography and liver stiffness measurement (LSM) by vibration-controlled transient elastography (Fibroscan® for the non-invasive assessment of liver fibrosis). Plasma ferritin and hepcidin concentrations were measured with an electrochemiluminescence immunoassay and mass spectrometry-based assay, respectively. Results: After stratification of patients by LSM tertiles [1st tertile median LSM: 3.6 (interquartile range: 3.3-4.0) kPa, 2nd tertile: 5.3 (4.9-5.9) kPa and 3rd tertile: 7.9 (6.7-9.4) kPa], we found that plasma ferritin and hepcidin concentrations increased across LSM tertiles [median ferritin: 68.7 (interquartile range: 25.1-147) vs. 85.8 (48.3-139) vs. 111 (59.3-203) μg/L, p = 0.021; median hepcidin: 2.5 (1.1-5.2) vs. 4.4 (2.5-7.3) vs. 4.1 (1.9-6.8) nmol/L, p = 0.032]. After adjustment for age, sex, diabetes duration, waist circumference, haemoglobin A1c, HOMA-insulin resistance score, triglycerides, haemoglobin, presence of hepatic steatosis on ultrasonography and patatin-like phospholipase domain-containing-3 (PNPLA3) rs738409 genetic variant, higher plasma ferritin levels were associated with greater LSM values (adjusted-odds ratio 2.10, 95% confidence interval 1.23-3.57, p = 0.005). Higher plasma hepcidin levels were also associated with greater LSM values (adjusted-odds ratio 1.90, 95% confidence interval 1.15-3.13, p = 0.013). Conclusions: Higher levels of plasma ferritin and hepcidin were associated with greater NAFLD-related liver fibrosis (assessed by LSM) in patients with T2DM, even after adjustment for established cardiometabolic risk factors, diabetes-related variables and other potential confounders

    Impact of CFTR Modulators on Beta-Cell Function in Children and Young Adults with Cystic Fibrosis

    Get PDF
    Background: To date, no consistent data are available on the possible impact of CFTR modulators on glucose metabolism. The aim of this study was to test the hypothesis that treatment with CFTR modulators is associated with an improvement in the key direct determinants of glucose regulation in children and young adults affected by Cystic Fibrosis (CF). Methods: In this study, 21 CF patients aged 10–25 underwent oral glucose tolerance test (OGTT) before and after 12–18 months of treatment with Lumacaftor/Ivacaftor or Elexacaftor-Ivacaftor-Tezacaftor. β-cell function (i.e., first and second phase of insulin secretion measured as derivative and proportional control, respectively) and insulin clearance were estimated by OGTT mathematical modelling. Insulin sensitivity was estimated by the Oral Glucose Sensitivity Index (OGIS). The dynamic interplay between β-cell function, insulin clearance and insulin sensitivity was analysed by vector plots of glucose-stimulated insulin bioavailability vs. insulin sensitivity. Results: No changes in glucose tolerance occurred after either treatment, whereas a significant improvement in pulmonary function and chronic bacterial infection was observed. Beta cell function and insulin clearance did not change in both treatment groups. Insulin sensitivity worsened in the Lumacaftor/Ivacaftor group. The analysis of vector plots confirmed that glucose regulation was stable in both groups. Conclusions: Treatment of CF patients with CFTR modulators does not significantly ameliorate glucose homeostasis and/or any of its direct determinants

    Glucose tolerance stages in Cystic Fibrosis are idenfied by a unique pattern of defects of Beta-cell function

    Get PDF
    To assess the order of severity of the defects of three direct determinants of glucose regulation, i.e., beta-cell function, insulin clearance and insulin sensitivity, in patients with CF categorized according their glucose tolerance status, including early elevation of mid-OGTT glucose values (>140 and < 200 mg/dL), named AGT140

    Simulation of Europa's water plume

    Get PDF
    Plumes on Europa would be extremely interesting science and mission targets, particularly due to the unique opportunity to obtain direct information on the subsurface composition, thereby addressing Europa's potential habitability. The existence of water plume on the Jupiter's moon Europa has been long speculated until the recent discover. HST imaged surpluses of hydrogen Lyman alpha and oxygen emissions above the southern hemisphere in December 2012 that are consistent with two 200 km high plumes of water vapor (Roth et al. 2013). In previous works ballistic cryovolcanism has been considered and modeled as a possible mechanism for the formation of low-albedo features on Europa's surface (Fagents et al. 2000). Our simulation agrees with the model of Fagents et al. (2000) and consists of icy particles that follow ballistic trajectories. The goal of such an analysis is to define the height, the distribution and the extension of the icy particles falling on the moon's surface as well as the thickness of the deposited layer. We expect to observe high albedo regions in contrast with the background albedo of Europa surface since we consider that material falling after a cryovolcanic plume consists of snow. In order to understand if this phenomenon is detectable we convert the particles deposit in a pixel image of albedo data. We consider also the limb view of the plume because, even if this detection requires optimal viewing geometry, it is easier detectable in principle against sky. Furthermore, we are studying the loss rates due to impact electron dissociation and ionization to understand how these reactions decrease the intensity of the phenomenon. We expect to obtain constraints on imaging requirements necessary to detect potential plumes that could be useful for ESA's JUICE mission, and in particular for the JANUS camera (Palumbo et al. 2014)

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition

    Flexibility along the Neck of the Neogene Terror Bird Andalgalornis steulleti (Aves Phorusrhacidae)

    Get PDF
    BACKGROUND: Andalgalornis steulleti from the upper Miocene-lower Pliocene (≈6 million years ago) of Argentina is a medium-sized patagornithine phorusrhacid. It was a member of the predominantly South American radiation of 'terror birds' (Phorusrhacidae) that were apex predators throughout much of the Cenozoic. A previous biomechanical study suggests that the skull would be prepared to make sudden movements in the sagittal plane to subdue prey. METHODOLOGY/PRINCIPAL FINDINGS: We analyze the flexion patterns of the neck of Andalgalornis based on the neck vertebrae morphology and biometrics. The transitional cervical vertebrae 5th and 9th clearly separate regions 1-2 and 2-3 respectively. Bifurcate neural spines are developed in the cervical vertebrae 7th to 12th suggesting the presence of a very intricate ligamentary system and of a very well developed epaxial musculature. The presence of the lig. elasticum interespinale is inferred. High neural spines of R3 suggest that this region concentrates the major stresses during downstrokes. CONCLUSIONS/SIGNIFICANCE: The musculoskeletal system of Andalgalornis seems to be prepared (1) to support a particularly big head during normal stance, and (2) to help the neck (and the head) rising after the maximum ventroflexion during a strike. The study herein is the first interpretation of the potential performance of the neck of Andalgalornis in its entirety and we considered this an important starting point to understand and reconstruct the flexion pattern of other phorusrhacids from which the neck is unknown

    Color variations on Victoria quadrangle: support for the geological mapping

    Get PDF
    Mercury is the closest planet to the Sun. Its extreme thermal environment makes it difficult to explore onsite. In 1974, Mariner 10, the first mission dedicated to Mercury, covered 45% of the surface during of the three Hermean flybys [1]. For about 30 years after Mariner 10, no other mission has flownto Mercury. Many unresolved issues need an answer, and in recent years the interest about Mercury has increased. MESSENGER mission contributed to understand Mercury's origin, its surface structure, and the nature of its magnetic field, exosphere, and magnetosphere [1]. The Mercury Dual Imaging System (MDIS) provided a global coverage of Mercury surface with variable spatial resolution. MDIS is equipped with a narrow angle camera (NAC), dedicated to the study of the geology and a wide angle camera (WAC) with 12 filters useful to investigate the surface composition[2]. Mercury has been divided into 15 quadrangles for mapping purposes [3]. The mapping process permits integration of different geological surface information to better understand the planet crust formation and evolution. Merging spectroscopically data is a poorly followed approach in planetary mapping, but it gives additional information about lithological composition, contributing to the construction of a more complete geological map [e.g. 4]. Recently, [5] proposed a first detailed map of all the Victoria quadrangle (H2). Victoria quadrangle is located in a longitude range between 270°E and 360°E and a latitude range of 22.5°N and 65°N,and itwas only partially mapped by Mariner 10 data[3]. Here we investigate the lithological variation by using the MDIS-WAC data to produce a set of color map products which could be asupport to the geological mapping [5]. The future ESA-JAXA mission to Mercury, BepiColombo, will soon contribute to improve the knowledge of Mercury surface composition and geology thanks to the Spectrometer and Imagers for MPO BepiColombo-Integrated Observatory SYStem (SIMBIO-SYS)[6]
    • …
    corecore