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Abstract
Background Elevated fasting plasma glucose has been associated with increased risk for development of type 2 diabetes 
(T2D). The balance between glucokinase (GCK) and glucose-6-phosphate catalytic subunit 2 (G6PC2) activity are involved 
in glucose homeostasis through glycolytic flux, and subsequent insulin secretion.
Aim In this study, we evaluated the association between the genetic variability of G6PC2 and GCK genes and T2D-related 
quantitative traits.
Methods In 794 drug-naïve, GADA-negative, newly diagnosed T2D patients (VNDS; NTC01526720) we performed: geno-
typing of 6 independent tag-SNPs within GCK gene and 5 tag-SNPs within G6PC2 gene; euglycaemic insulin clamp to 
assess insulin sensitivity; OGTT to estimate beta-cell function (derivative and proportional control; DC, PC) by mathematical 
modeling. Genetic association analysis has been conducted using Plink software.
Results Two SNPs within GCK gene (rs882019 and rs1303722) were associated to DC in opposite way (both p < 0.004). 
Two G6PC2 variants (rs13387347 and rs560887) were associated to both parameters of insulin secretion (DC and PC) and 
to fasting C-peptide levels (all p < 0.038). Moreover, subjects carrying the A allele of rs560887 showed higher values of 
2h-plasma glucose (2hPG) (p = 0.033). Haplotype analysis revealed that GCK (AAC AAA ) haplotype was associated to 
decreased fasting C-peptide levels, whereas, the most frequent haplotype of G6PC2 (GGAAG) was associated with higher 
fasting C-peptide levels (p = 0.001), higher PC (β = 6.87, p = 0.022) and the lower 2hPG (p = 0.012).
Conclusion Our findings confirmed the role of GCK and G6PC2 in regulating the pulsatility in insulin secretion thereby influ-
encing insulin-signaling and leading to a gradual modulation in glucose levels in Italian patients with newly diagnosed T2D.

Keywords G6PC2 · GCK · Fasting plasma glucose · Beta-cell function · Haplotypes · SNP

Introduction

Homeostatic control of glucose levels involves complex 
interactions between molecules that act in concert to main-
tain a normal fasting glucose concentration. High, but still 
normal, fasting plasma glucose (FPG) levels are associ-
ated with type 2 diabetes (T2D) increased risk [1–3], are 
inversely correlated to beta cell function (first phase insulin 
release) [4] and, in several genome wide association studies 
(GWAS), are reported to be influenced by a broad number of 
loci influencing T2D-related quantitative traits and/or T2D 
development [5–9]. Deep phenotyping of beta cell function 
in vivo by mathematical modeling can be summarized with 
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two distinct beta cell sensitivities, one to the rate of increase 
of plasma glucose (derivative or dynamic control, DC) and 
the other to glucose concentration itself (proportional or 
static control, PC). In the experimental setting of the IVGTT 
and the hyperglycemic clamp, DC and PC are responsible of 
classical first phase and second phase insulin release, respec-
tively. PC, which to many researchers is beta cell glucose 
sensitivity by antonomasia, shows a progressive fall from 
normal glucose tolerance to pre-diabetes [10] and to type 2 
diabetes [11, 12] and, importantly, predicts the development 
of glucose intolerance [13] and type 2 diabetes [14].

In the liver, the glucoseglucose-6-phosphate futile cycle 
can work as an ATP-consuming sliding door, the setting 
level of which directly affects glucose levels. Glucokinase 
and glucose-6-phosphatase are the molecular bases of the 
glucoseglucose-6-phosphate cycle. Glucokinase is a pro-
tein encoded by the GCK gene and phosphorylates glucose 
to glucose-6-phosphate, regulating the first step of glu-
cose pathways [15] in liver, pancreatic beta cells and some 
glucose-sensing neurons in the central nervous system. 
Isozymes of glucokinase and glucose-6-phosphatase are 
expressed also in pancreatic beta cells and can sustain the 
operation of the glucoseglucose-6-phosphate cycle [16]. As 
in the liver, an unbalance in favor of glucose-6-phosphatase 
would lead to hyperglycemia because it would impair the 
sensitivity of one major beta cell glucose sensor to plasma 
glucose on one side, and it would consume ATP on the other 
side, thereby decreasing the net ATP yield achieved through 
the glucose molecules channeled into glycolysis. Both mech-
anisms would result into reduced glucose stimulated insulin 
secretion. Strictly speaking, indeed, beta cells are sensors of 
glucose-6-phosphate, not glucose, bioavailability through its 
metabolic transduction in ATP bioavailability.

Genome wide association studies have reported that 
both GCK and the beta cell specific glucose-6-phosphatase 
catalytic subunit 2 gene (G6PC2) harbor common variants 
firmly associated to fasting plasma glucose and type 2 dia-
betes mellitus. Mutations of GCK are the cause of MODY2, 
and glucokinase, in liver and beta cell or in liver only, has 
been considered for a while a viable molecular target for 
novel treatments of type 2 diabetes, leading to the devel-
opment of glucokinase stimulators. Both germline [17, 18] 
and beta cell selective [19] deletion of G6PC2 result into 
lower glucose levels in the mouse. The collective body of 
evidence, therefore, has led to include G6PC2 among the 
potential molecular targets of type 2 diabetes treatment [20].

Subtle, gene-based changes in the operation of the glu-
coseglucose-6-phosphate cycle may be anticipated to impair 
or to improve the glucose sensing mechanism(s) of beta cell. 
No previous studies, however, have addressed simultane-
ously the potential role of common genetic variability at 
GCK and G6PC2, i.e., the genes underpinning the glucose-
glucose-6-phosphate cycle, on beta cell glucose sensitivity. 

The present investigation, therefore, was undertaken to 
assess the potential role of common GCK and G6PC2 vari-
ants, either isolated or as haplotypes [21, 22], in modulat-
ing beta cell glucose sensitivity in a cohort of patients with 
newly diagnosed type 2 diabetes belonging to the Verona 
Newly Diagnosed T2D Study (VNDS).

Material and methods

Study population

The VNDS is a cohort consisting of Caucasian patients with 
newly diagnosed type 2 diabetes, drug-naïve and glutamic 
acid decarboxylase antibodies negative (GAD65 < 1 KU/L). 
As of January 1, 2002, all patients with T2D, defined on the 
basis of the American Diabetes Association [23], referred 
to the Diabetes Clinic embedded into the Division of Endo-
crinology, Diabetes and Metabolic Diseases of the Univer-
sity and Hospital Trust of Verona and whose disease was 
diagnosed in the past 6 months were offered to participate 
in this study. Recruitment was ended on December 31, 2015 
and a follow-up was then planned and is ongoing. A detailed 
description of the experimental design has been previously 
published [24, 25]. In this study, that represent the 11th 
research performed on this cohort, we report the data col-
lected in 794 consecutive patients, whose characteristics are 
summarized in Table 1. This research was approved by the 
Human Investigation Committee of the Verona City Hospital 
and the study was conducted in accordance with the Decla-
ration of Helsinki. Written informed consent was obtained 
from all study participants after a full explanation of the 
study.

Metabolic phenotypes

Standard clinical parameters were assessed in all patients. 
Metabolic tests were performed on two separate days in 
random order. On 1 day, a euglycaemic insulin clamp was 
performed to assess insulin sensitivity [26]. The amount of 
glucose metabolized during the last 60 min of the clamp 
[M-value, reference insulin sensitivity; units: μmol/min/m2 
body surface area (BSA)] was computed with standard for-
mulas [27].

On a separate day, a frequently sampled, prolonged (240 
or 300 min) OGTT (75 g) was carried out and beta-cell func-
tion (BF) was reconstructed by mathematical modelling, as 
previously described [27]. By this method, BF is described 
by two parameters of beta cell glucose sensitivity:

1. Derivative (or dynamic) control (DC): the response of 
the beta cell to the rate of increase of plasma glucose;
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2. Proportional (or static) control (PC): the response of the 
beta cell to glucose concentration per se, herein pre-
sented as the stimulus–response curve relating insulin 
secretion rate (ISR, pmoles per min) to glucose concen-
tration (mmol/l).

Laboratory data

Plasma glucose was assessed in duplicate with a Beckman 
Glucose Analyzer II (Beckman Instruments, Fullerton, CA, 
USA) or with an YSI 2300 Stat Plus Glucose & Lactate Ana-
lyzer (YSI Inc., Yellow Springs, OH, USA). Chemilumines-
cence based immunometric methods were used to measure 
serum C-peptide and insulin [24]. Glycosylated haemoglo-
bin and serum lipids by standard in-house methods.

Genotyping

Two genomic area based on the International HapMap Pro-
ject Phase III data on the CEU population were screened. 
GCK gene, on chromosome 7p13, and 17 kb on its 3′ flank-
ing region and the human chromosome 2q31.1 encom-
passing the G6PC2 gene, as well as 7 kb of its 5′ flanking 
region. Based on Tagger analysis using GEVALT (Geno-
type Visualization and Algorithmic Tool) [21] software, 
five SNPs (rs853770, rs483109, rs12475700, rs13387347 
and rs560887) on G6PC2 gene and six SNPs (rs11768607, 

rs882019, rs17832252, rs1476891, rs1303722 and 
rs4607517) on GCK region were selected as tagging SNPs 
covering at least 97% of the common genetic variability. 
Peripheral blood samples were collected from the par-
ticipants and DNA was extracted by standard salting-out 
method. Genotypes were assessed by Veracode technique 
(Illumina Inc, CA), applying the GoldenGate Genotyping 
Assay according to manufacturer’s instructions [28]. Plink 
(http:// pngu. mgh. harva rd. edu/ purce ll/ plink/) [29] was used 
to obtain the posterior distribution of haplotypes consist-
ent with the observed genotypes. Haplotypes’ associations 
were tested in a linear regression model, as a function of 
haplotype dosage from posterior distribution, and includ-
ing age, sex, and BMI as covariates. The selected SNPs 
were in low linkage disequilibrium (LD), with  r2 between 
the SNPs at each locus comprised between 0.0 and 0.54 
(Figure S1 and S2).

Statistical analysis

Data are summarized as medians and interquartile range. 
Generalized Linear Models, adjusted for age, sex and BMI, 
with or without repeated measures as appropriate, were 
applied to test the associations between metabolic traits 
and SNP alleles or haplotypes. The covariates included 
in the multivariable regression models were selected 
on the basis of their biological plausibility as potential 

Table 1  Anthropometric and 
biochemical features of the total 
sample

Data expressed as median and interquartile range (IQR) *Data are expressed as percentage
BMI Body Mass Index; SBP systolic blood pressure; DBP diastolic blood pressure; HbA1c DCCT  diabetes 
control and complication trial-aligned hemoglobin A1c; HbA1c IFCC international federation of clinical 
chemistry-aligned hemoglobin A1c; FPG fasting plasma glucose; 2hPG 2-h plasma glucose

Variable All

N (M/F) 794 (542/252)
Age (years) 59 (52–66)
BMI (Kg·m−2) 29.3 (26.6–32.9)
Waist (cm) 100 (94–109)
Current smokers (%)* 18.3
HbA1c DCCT  (%) 6.6 (6.1–7.3)
HbA1c IFCC (mmol/mol) 48.7 (44.2–56.3)
SBP (mmHg) 134 (120–145)
DBP (mmHg) 80 (80–90)
FPG (mmol/L) 7.0 (6.2–7.9)
2hPG (mmol/L) 12.9 (10.4–16.0)
Fasting c-peptide (nmol/L) 0.98 (0.76–1.26)
Insulin Sensitivity (N = 773)
 M-clamp (µmol/min/m2 BSA) 605 (380–874)

Beta-cell glucose sensitivity (N = 735)
 Derivative control (σ1) (pmol/m2 BSA)·(mmol·L−1·min−1)−1 444 (68–938)
 Proportional control (σ2) [(pmol/min/m2 BSA)/(mmol/L)] 46.8 (25.3–76.1)

http://pngu.mgh.harvard.edu/purcell/plink/
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confounding factors [30, 31]. Both SNPs and haplotype 
analyses were performed applying an additive genetic 
model. Statistical calculations were performed using SPSS 
22.0 software (SPSS Inc., Chicago, IL, USA). Statistical 
significance was declared at p < 0.05 (95% confidence 
interval).

Results

We studied a cohort of 794 Italian newly diagnosed type 
2 diabetes subjects whose anthropometric, clinical, and 
metabolic features are shown in Table 1. Among the 794 
patients included in the study, 542 (68.3%) were male with 
a median age of 59 years [interquartile range: (52–66)]. 
Patients were more likely to be overweight or obese, with 
less than 50% having obesity. Glucose control, as meas-
ured by HbA1c, was fairly good with 25% patients having 
HbA1c > 7.3%. The frequency of subjects with antihyper-
tensive therapy was 55.8% (n = 443) and the prevalence of 
current smoker subjects was of about 20%.

Effects of single GCK and G6PC2 variants on beta cell 
glucose sensitivity

The distributions of all genotypes were compatible with 
Hardy–Weinberg equilibrium (all p > 0.161).

Two (rs882019 and rs1303722) out of six SNPs located 
in the GCK region showed a significant association with 
DC of beta cell function. Carriers of the minor (G) 
rs882019 allele had significantly higher DC (p < 0.001), 
whereas carriers of of the minor (A) rs1303722 allele had 
significantly lower DC (p = 0.004) (Table 2). Likewise, 
two out of five SNPs located in the G6PC2 region were 
associated to beta cell glucose sensitivity. The minor allele 
of rs560887 (A) was associated with a significant reduc-
tion in both DC (p = 0.018) and PC, i.e., the curve relating 
glucose (stimulus) to ISR (response) (p = 0.03). The minor 
allele of rs13387347 (A) was associated with a signifi-
cant enhancement of both DC (p = 0.03) and PC (p = 0.04) 
(Table 2). Moreover, subjects carrying the minor allele of 
rs560887 (A), i.e., the ones with reduced beta cell glucose 
sensitivity, had also higher 2-h plasma glucose (p = 0.033). 
None of the SNPs of either gene was associated to fasting 
plasma glucose (Table 2).

Effects of GCK and G6PC2 haplotypes on beta cell 
glucose sensitivity

We detected 24 and 13 haplotypes at GCK and G6PC2 
regions, respectively. Their frequencies are presented in 

detail in Table S1 and Table S2. The highest frequencies of 
GCK (AAC AAA ) and G6PC2 (GGAAG) haplotypes were 
about 19.5% and 22%, respectively. The latter haplotype 
was associated with higher beta cell glucose sensitivity 
(PC) (β = 6.87, p = 0.022) and lower 2-h plasma glucose 
(β = − 0.678, p = 0.012) (Fig. 1). No association was found 
between any haplotype and fasting plasma glucose.

Discussion

In this single center cross-sectional study, we assessed the 
distribution of common variants within GCK and G6PC2, 
i.e., the genes underlying the glucoseglucose-6-phosphate 
cycle, in patients with newly diagnosed type 2 diabetic sub-
jects who had a state-of-the-art assessment of two param-
eters (DC and PC) of beta cell glucose sensitivity.

Two SNPs of GCK (rs882019 and rs1303722) and two of 
G6PC2 (rs560887 and rs13387347), as well as the most fre-
quent haplotype of G6PC2, showed significant associations 
with beta cell glucose sensitivity. These findings are novel 
and relevant, in that they suggest a potential mechanistic 
link between genetic variation of these loci and beta cell 
glucose sensitivity, a parameter measurable only with deep 
phenotyping, which is associated with and predicts changes 
in glucose regulation. These findings may be mechanistically 
underlined by changes in the rate of the glucose glucose-
6-phosphate cycle in the pancreatic beta cells, which result 
into concomitant changes of beta cell glucose sensitivity of 
opposite sign. Thus, our study suggests a scenario in which 
the common genetic variability of GCK and G6PC2, by 
affecting the rate of the glucose glucose-6-phosphate cycle, 
modulates beta cell glucose sensitivity and glucose stimu-
lated insulin secretion, which in turn exerts a measurable 
impact on glucose regulation and, eventually, on the risk of 
developing type 2 diabetes.

Previous studies identified GCK and G6PC2 as risk genes 
for T2D and for elevated fasting plasma glucose in people 
without diabetes mellitus [3, 32, 33]. The SNP rs1799884, 
located in the pancreatic β-cell-specific promoter of GCK 
gene, harbours a variant reported to be associated with fast-
ing glucose and insulin secretion [34, 35]. It is in strong 
LD relationship (D’ = 1 and r2 = 0.986) with one tag-SNPs 
(rs4607517) selected in our study. However, we failed to 
find any association between rs4607517 and fasting glucose 
or beta cell glucose sensitivity. This data are in agreement 
with other studies which found no associations with fasting 
glucose or insulin secretion or other T2D-related quantita-
tive trait [36]. Our findings that the genetic variability of two 
SNPs of GCK affect DC f beta cell function are in agreement 
with an early study by Hu et al. [37].
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Previous studies have highlighted the potential role of 
rs560887 variants of G6PC2 in affecting glucose regulation 
[38], fasting glucose and 2-h glucose levels [39]. Impor-
tantly, the association between G6PC2 SNPs and FPG was 
reported in non-diabetic population, but not in T2D cohorts 
[6, 37, 39]. Similarly, in our work, the rs560887 variants had 
no statistically significant association with fasting glucose.

In our study, rs560887 seems to affect both parameters of 
beta cell glucose sensitivity, i.e., DC and PC, which may be 
causally related to the significant association with 2-h glu-
cose after the OGTT. Similar results were reported in previ-
ous papers, but those studies were performed in non-diabetic 
subjects or in pooled T2D/control cohort [37, 40, 41]. Func-
tional studies performed on G6PC2 knockout mice identi-
fied that the complete isoform of G6pc2 may be critical for 
hydrolytic activity and, consequently, may have implications 
for activity of G6pc2 and its potential role in glucose regu-
lation [32, 42]. Moreover, previous studies have reported 
that G6PC2 can modulate islet calcium metabolism in the 
endoplasmatic reticulum and affect the pulsatility of insulin 
secretion [40]. These data were not confirmed in humans 
[43]. To the best of our knowledge, this is the first study in 
which GCK and G6PC2 haplotypes are assessed together 
with deep phenotyping of beta cell glucose sensitivity in 
a large cohort of drug naïve T2D subjects. Furthermore, a 
number of reports [21, 22] have emphasized that the haplo-
type analysis is the optimal approach to capture the global 
genetic variability, since it takes into account the allelic 
heterogeneity of the whole genetic regions. However, our 
data cannot prove a cause-effect relationship and they need 

be confirmed by other studies. Finally, we cannot exclude 
the possibility that other complex interactions among GCK, 
G6PC2 and glucokinase regulatory protein (GCKR) might 
have an influence on glucose levels [44]. In a subset of this 
same cohort, we previously reported that two (rs6717980 
and rs2384628) out of six GCKR SNPs exerted a strong, 
independent influence on β-cell function [26].

Strengths of our study are: (a) large sample of subjects 
with newly diagnosed drug naïve T2D, with moderately high 
glucose levels and with limited confounding effects of glu-
cose toxicity or diabetes therapy; (b) deep phenotyping of 
beta cell glucose sensitivity; (c) investigation extended from 
SNPs to haplotypes, thereby providing improved mapping of 
causal genetic regions, new insights on single variants influ-
encing clinical traits, and additional statistical and biologic 
power in comparison to single variants studies.

Limitations of this study are: (a) the sample is not popu-
lation based, although, on the basis of its phenotypic pro-
file, the VNDS cohort is fairly representative of people with 
newly diagnosed T2D; (b) very cautious extrapolation of our 
results to other ethnic groups; (c) lack of replication of our 
findings in an independent sample of patients.

In conclusion, we have reported that the common genetic 
variability of the two loci underlying the glucoseglucose-
6-phosphate cycle is related to beta cell glucose sensitivity 
in T2D. These findings may be relevant for the natural his-
tory of the disease and may support the rationale to develop 
novel treatments which target beta cell glucoseglucose-
6-phosphate cycle through G6PC2.

Fig. 1  Association of the GGAAG haplotype of G6PC2 with beta 
cell glucose sensitivity (proportional control of β-cell function) and 
with 2h-plasma glucose levels. a The GGAAG haplotype is associ-
ated to higher beta cell glucose sensitivity (proportional control of 
beta cell function presented as the stimulus–response curve relating 

insulin secretion rate (ISR) to glucose concentration) in patients with 
newly diagnosed type 2 diabetes (p = 0.022); b the GGAAG haplo-
type is associated to lower 2hPG in patients with newly diagnosed 
type 2 diabetes (p = 0.012)
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