1,466 research outputs found

    A search for near infrared counterparts of 3 pulsar wind nebulae

    Full text link
    While pulsar wind nebulae (PWNe) and their associated isolated pulsars are commonly detected at X-ray energies, they are much rarer at near infrared (nIR) and optical wavelengths. Here we examine three PWN systems in the Galactic plane - IGR J14003-6326, HESS J1632-478 and IGR J18490-0000 - in a bid to identify optical/nIR emission associated with either the extended PWNe or their previously detected X-ray point sources. We obtain optical/nIR images of the three fields with the ESO - New Technology Telescope and apply standard photometric and astrometric calibrations. We find no evidence of any extended emission associated with the PWNe in any of the fields; neither do we find any new counterparts to the X-ray point sources, except to confirm the magnitude of the previously identified counterpart candidate of IGR J18490-0000. Further observations are required to confirm the association of the nIR source to IGR J18490-0000 and to detect counterparts to IGR J14003-6326 and HESS J1632-478, while a more accurate X-ray position is required to reduce the probability of a chance superposition in the field of the latter.Comment: Accepted to A&A (4 pages, 1 figure

    Bayesian reweighting of nuclear PDFs and constraints from proton-lead collisions at the LHC

    Get PDF
    New hard-scattering measurements from the LHC proton-lead run have the potential to provide important constraints on the nuclear parton distributions and thus contributing to a better understanding of the initial state in heavy ion collisions. In order to quantify these constraints, as well as to assess the compatibility with available nuclear data from fixed target experiments and from RHIC, the traditional strategy is to perform a global fit of nuclear PDFs. This procedure is however time consuming and technically challenging, and moreover can only be performed by the PDF fitters themselves. In the case of proton PDFs, an alternative approach has been suggested that uses Bayesian inference to propagate the effects of new data into the PDFs without the need of refitting. In this work, we apply this reweighting procedure to study the impact on nuclear PDFs of low-mass Drell-Yan and single-inclusive hadroproduction pseudo-data from proton-lead collisions at the LHC as representative examples. In the hadroproduction case, in addition we assess the possibility of discriminating between the DGLAP and CGC production frameworks. We find that the LHC proton-lead data could lead to a substantial reduction of the uncertainties on nuclear PDFs, in particular for the small-x gluon PDF where uncertainties could decrease by up to a factor two. The Monte Carlo replicas of EPS09 used in the analysis are released as a public code for general use. It can be directly used, in particular, by the experimental collaborations to check, in a straightforward manner, the degree of compatibility of the new data with the global nPDF analyses.Comment: 21 pages, 10 figure

    Doppler Tomography of XTE J2123-058 and Other Neutron Star LMXBs

    Full text link
    We describe Doppler tomography obtained in the 1998 outburst of the neutron star low mass X-ray binary (LMXB) XTE J2123-058. This analysis, and other aspects of phase-resolved spectroscopy, indicate similarities to SW Sex systems, except that anomalous emission kinematics are seen in HeII, whilst phase 0.5 absorption is confined to H alpha. This separation of these effects may provide tighter constraints on models in the LMXB case than is possible for SW Sex systems. We will compare results for other LMXBs which appear to show similar kinematics and discuss how models for the SW Sex phenomenon can be adapted to these systems. Finally we will summarise the limited Doppler tomography performed on the class of neutron star LMXBs as a whole, and discuss whether any common patterns can yet be identified.Comment: 8 pages, 5 postscript figures. To appear in Proceedings of Astro-Tomography Workshop, Brussels, July 2000, Eds. H. Boffin, D. Steeghs, Springer-Verlag Lecture Notes in Physic

    Infrared identification of high-mass X-ray binaries discovered by INTEGRAL

    Get PDF
    Since it started observing the sky, the INTEGRAL satellite has discovered new categories of high mass X-ray binaries (HMXB) in our Galaxy. These observations raise important questions on the formation and evolution of these rare and short-lived objects. We present here new infrared observations from which to reveal or constrain the nature of 15 INTEGRAL sources, which allow us to update and discuss the Galactic HMXB population statistics. After previous photometric and spectroscopic observing campaigns in the optical and near-infrared, new photometry and spectroscopy was performed in the near-infrared with the SofI instrument on the ESO/NTT telescope in 2008 and 2010 on a sample of INTEGRAL sources. These observations, and specifically the detection of certain features in the spectra, allow the identification of these high-energy objects by comparison with published nIR spectral atlases of O and B stars. We present photometric data of nine sources (IGR J10101-5654, IGR J11187-5438, IGR J11435-6109, IGR J14331-6112, IGR J16328-4726, IGR J17200-3116, IGR J17354-3255, IGR J17404-3655, and IGR J17586-2129) and spectroscopic observations of 13 sources (IGR J10101-5654, IGR J11435-6109, IGR J13020-6359, IGR J14331-6112, IGR J14488-5942, IGR J16195-4945, IGR J16318-4848, IGR J16320-4751, IGR J16328-4726, IGR J16418-4532, IGR J17354-3255, IGR J17404-3655, and IGR J17586-2129). Our spectroscopic measurements indicate that: five of these objects are Oe/Be high-mass X-ray binaries (BeHMXB), six are supergiant high-mass X-ray binaries (sgHMXB), and two are sgB[e]. From a statistical point of view, we estimate the proportion of confirmed sgHMXB to be 42% and that of the confirmed BeHMXB to be 49%. The remaining 9% are peculiar HMXB.Comment: Accepted for publication in A&A (in press

    The nature of the X-ray binary IGR J19294+1816 from INTEGRAL, RXTE, and Swift observations

    Full text link
    We report the results of a high-energy multi-instrumental campaign with INTEGRAL, RXTE, and Swift of the recently discovered INTEGRAL source IGR J19294+1816. The Swift/XRT data allow us to refine the position of the source to RA= 19h 29m 55.9s Dec=+18deg 18' 38.4" (+- 3.5"), which in turn permits us to identify a candidate infrared counterpart. The Swift and RXTE spectra are well fitted with absorbed power laws with hard (Gamma ~ 1) photon indices. During the longest Swift observation, we obtained evidence of absorption in true excess to the Galactic value, which may indicate some intrinsic absorption in this source. We detected a strong (P=40%) pulsation at 12.43781 (+-0.00003) s that we interpret as the spin period of a pulsar. All these results, coupled with the possible 117 day orbital period, point to IGR J19294+1816 being an HMXB with a Be companion star. However, while the long-term INTEGRAL/IBIS/ISGRI 18--40 keV light curve shows that the source spends most of its time in an undetectable state, we detect occurrences of short (~2000-3000 s) and intense flares that are more typical of supergiant fast X-ray transients. We therefore cannot make firm conclusions on the type of system, and we discuss the possible implications of IGR J19294+1816 being an SFXT.Comment: 7 pages, 6 figures, accepted for publication in A&
    corecore