511 research outputs found

    Fractal-like aggregates: Relation between morphology and physical properties

    Get PDF
    A number of modern technological applications require a detailed calculation of the physical properties of aggregated aerosol particles. For example, in probing soot aerosols by the method called laser-induced incandescence (LII), the soot clusters are suddenly heated by a short, powerful laser pulse and then cool down to the temperature of the carrier gas. LII sizing is based on rigorous calculation of the soot aggregate heat-up and cooling and involves prediction of laser light absorption and energy and mass transfer between aggregated particles and the ambient gas. This paper describes results of numerical simulations of the mass or energy transfer between the gas and fractal-like aggregates of N spherical particles in either the free-molecular or continuum regime, as well as the light scattering properties of random fractal-like aggregates, based on Rayleigh–Debye–Gans (RDG) theory. The aggregate geometries are generated numerically using specially developed algorithms allowing “tuning” of the fractal dimension and prefactor values. Our results are presented in the form of easily applicable scaling laws, with special attention paid to relations between the aggregate gyration radius and the effective radius describing various transport processes between the aggregates and the carrier gas

    ULTRACAM observations of the black hole X-ray transient XTE J1118+480 in quiescence

    Get PDF
    We present high time-resolution multicolour observations of the quiescent soft X-ray transient XTE J1118+480 obtained with ULTRACAM. Superimposed on the double-humped continuum g' and i'-band lightcurves are rapid flare events which typically last a few minutes. The power density spectrum of the lightcurves can be described by a broken power-law model with a break frequency at ~2 mHz or a power-law model plus a broad quasi-periodic oscillation (QPO) at ~2 mHz. In the context of the cellular-automaton we estimate the size of the quiescent advection-dominated flow (ADAF) region to be ~10^4 Schwarzschild radii, similar to that observed in other quiescent black hole X-ray transients, suggesting the same underlying physics. The similarites between the low/hard and quiescent state PDS suggest a similar origin for the optical and X-ray variability, most likely from regions at/near the ADAF.Comment: 9 pages, 6 figures, accepted by MNRA

    The H-alpha and Infrared Star Formation Rates for the Nearby Field Galaxy Survey

    Full text link
    We investigate the H-alpha and infrared star formation rate (SFR) diagnostics for galaxies in the Nearby Field Galaxy Survey (NFGS). For the 81 galaxies in our sample, we derive H-alpha fluxes (included here) from integrated spectra. There is a strong correlation between the ratio of far-infrared to optical luminosities L(FIR)/L(H-alpha) and the extinction E(B-V) measured with the Balmer decrement. Before reddening correction, the SFR(IR) and SFR(H-alpha) are related to each other by a power-law. Correction of the SFR(H-alpha) for extinction using the Balmer decrement and a classical reddening curve both reduces the scatter in the SFR(IR)-SFR(H-alpha) correlation and results in a much closer agreement (within ~10%) between the two SFR indicators. This SFR relationship spans 4 orders of magnitude and holds for all Hubble types with IRAS detections in the NFGS. A constant ratio between the SFR(IR) and SFR(H-alpha) for all Hubble types, including early types (S0-Sab), suggests that the IR emission in all of these objects results from a young stellar population.Comment: 23 pages, 5 figures, 1 table. Accepted for publication in the Astronomical Journal. V2: Important changes: IRAS fluxes updated. Only moderate and good quality IRAS FIR fluxes are now used, resulting in slight changes to the equations and figures. The IR and H-alpha SFRs now agree to within ~10%, rather than ~30% as quoted previousl

    Optical studies of the X-ray transient XTE J2123-058 -I. Photometry

    Get PDF
    We present optical photometry of the X-ray transient XTE J2123-058, obtained in July-October 1998. The light curves are strongly modulated on the 5.95hrs orbital period, and exhibit dramatic changes in amplitude and form during the decline. We used synthetic models which include the effect of partial eclipses and X-ray heating effects, to estimate the system parameters, and we constrain the binary inclination to be i=73+-4 degrees. The model is successful in reproducing the light curves at different stages of the decay by requiring the accretion disc to become smaller and thinner by 30% as the system fades by 1.7 mags in the optical. From Aug 26 the system reaches quiescence with a mean magnitude of R=21.7+-0.1 and our data are consistent with the optical variability being dominated by the companion's ellipsoidal modulation.Comment: 6 pages, 6 figure

    Development of an open-source toolbox for the analysis and visualization of remotely sensed time series

    Get PDF
    The GEONETCast data-dissemination system delivers free multi-source raw satellite images and processed products to users worldwide; from these data, users can construct long time series to study dynamic phenomena. To explore these dynamics, using an animation with few controls is common practice. But animations easily produce information overload leading to change blindness, a problem that can be addressed in various ways. We present a combination of analytical and visual functionalities to better support visual exploration of animated time series. Analytical pre-processing functions include slicing and tracking of objects of interest. Results of the slicing and the tracking are input to the visualization environment, which is further enriched by tools to make various time, attribute, and area selections and by options to visually enhance selections relative to their surroundings, visualize the path of moving objects, and multiple layers. The resulting toolbox is dedicated to visual exploration and analysis of dynamic phenomena in time series. A case study demonstrates, with a use scenario, how it works. Early exposure of some visualization functions to users has already led to improvements, but more extensive testing will follow after further enrichment of the toolbox. Directions of future research are described

    Cyclic brightening in the short-period WZ Sge-type cataclysmic variable SDSS J080434.20+510349.2

    Full text link
    We have observed a new cataclysmic variable (CV) SDSS J080434.20+510349.2 and study the origin of a long-term variability found in its light curve. Multi-longitude time-resolved photometric observations were carried out to analyze the uncommon behavior also found recently in two newly discovered CVs. This study of SDSS J080434.20+510349.2 mainly concerns the understanding of the nature of the observed double-humped light curve and its relation to a cyclic brightening occurring during quiescence. The observations were obtained early in 2007, when the object was at about V~17.1, 0.4 mag brighter than the pre-outburst magnitude. The light curve shows a sinusoidal variability with an amplitude of about 0.07 mag and a periodicity of 42.48 min, which is half of the orbital period of the system. In addition, we have observed two "mini-outbursts" of the system up to 0.6 mag, with a duration of about 4 days each. The "mini-outburst" had a symmetric profile and repeated in about 32 days. Subsequent monitoring of the system shows a cyclical behaviour of such "mini-outbursts" with a similar recurrence period. The origin of the double-humped light curve and the periodic brightening is discussed in the light of the evolutionary state of SDSS J080434.20+510349.2.Comment: 7 pages, 6 figures, Accepted by A&A, typos added, figure correcte

    Scientific Performance of the ISDC Quick Look Analysis

    Full text link
    The INTEGRAL Science Data Centre (ISDC) routinely monitors the Near Real Time data (NRT) from the INTEGRAL satellite. A first scientific analysis is made in order to check for the detection of new, transient or highly variable sources in the data. Of primary importance for this work is the Interactive Quick Look Analysis (IQLA), which produces JEM-X and ISGRI images and monitors them for interesting astrophysical eventsComment: 4 pages, 3 figures. Proceedings of 5th INTEGRAL Workshop: The INTEGRAL Universe, Munich, 16-20 February 2004. Accepted for publication in European Space Agency Special Publication 552. See paper for institute affiliation
    • …
    corecore