44 research outputs found

    BEHT: Blockchain-Based Efficient Highway Toll Paradigm for Opportunistic Autonomous Vehicle Platoon

    Get PDF
    Autonomous vehicle platoon is a promising paradigm towards traffic congestion problems in the intelligent transportation system. However, under certain circumstances, the advantage of the platoon cannot be fully developed. In this paper, we focus on the highway Electronic Toll Collection (ETC) charging problem. We try to let the opportunistic platoon pass the ETC as a whole. There are three main issues in this scenario. Firstly, the opportunistic platoon is temporarily composed; vehicles do not trust each other. Secondly, single vehicle may try to escape from the ETC charging by following the platoon. Finally, platoon members may collude with each other and try to underreport the number of vehicles in the platoon so as to evade payment. To solve these challenges, we propose a blockchain-based efficient highway toll paradigm for the opportunistic platoon. The driving history, credential information of every registered vehicle, is recorded and verified from the blockchain. A roadside unit (RSU) is adopted to distinguish the single vehicle from the platoon and in charge of lane allocation. Additionally, an aggregate signature is introduced to accelerate the authentication procedure in the RSU. We analyse the potential security threats in this scenario. The experimental result indicates that our scheme is efficient and practical. Document type: Articl

    A lightweight cloud sharing PHR system with access policy updating

    Get PDF

    Machine unlearning in brain-inspired neural network paradigms

    Get PDF
    Machine unlearning, which is crucial for data privacy and regulatory compliance, involves the selective removal of specific information from a machine learning model. This study focuses on implementing machine unlearning in Spiking Neuron Models (SNMs) that closely mimic biological neural network behaviors, aiming to enhance both flexibility and ethical compliance of AI models. We introduce a novel hybrid approach for machine unlearning in SNMs, which combines selective synaptic retraining, synaptic pruning, and adaptive neuron thresholding. This methodology is designed to effectively eliminate targeted information while preserving the overall integrity and performance of the neural network. Extensive experiments were conducted on various computer vision datasets to assess the impact of machine unlearning on critical performance metrics such as accuracy, precision, recall, and ROC AUC. Our findings indicate that the hybrid approach not only maintains but in some cases enhances the neural network's performance post-unlearning. The results confirm the practicality and efficiency of our approach, underscoring its applicability in real-world AI systems

    Atomic force acoustic microscopy reveals the influence of substrate stiffness and topography on cell behavior

    Get PDF
    The stiffness and the topography of the substrate at the cell-substrate interface are two key properties influencing cell behavior. In this paper, atomic force acoustic microscopy (AFAM) is used to investigate the influence of substrate stiffness and substrate topography on the responses of L929 fibroblasts. This combined nondestructive technique is able to characterize materials at high lateral resolution. To produce substrates of tunable stiffness and topography, we imprint nanostripe patterns on undeveloped and developed SU-8 photoresist films using electron-beam lithography (EBL). Elastic deformations of the substrate surfaces and the cells are revealed by AFAM. Our results show that AFAM is capable of imaging surface elastic deformations. By immunofluorescence experiments, we find that the L929 cells significantly elongate on the patterned stiffness substrate, whereas the elasticity of the pattern has only little effect on the spreading of the L929 cells. The influence of the topography pattern on the cell alignment and morphology is even more pronounced leading to an arrangement of the cells along the nanostripe pattern. Our method is useful for the quantitative characterization of cell-substrate interactions and provides guidance for the tissue regeneration therapy in biomedicine

    Evaluations of 5-fluorourcil treated lung cancer cells by atomic force microscopy

    Get PDF
    Atomic force microscopy (AFM) can be used to obtain the physical information of single live cancer cells; however, the physical changes in live cells with time based on AFM remain to be studied, which play a key role in the evaluation of the efficacy and side effects of drugs. Herein, the treatment of the A549 cell line with the anticarcinogen 5-fluorouracil has been discussed based on the AFM analysis of their continuous physical changes, including their surface morphology, height, adhesion and Young's modulus, with time. In comparison, the African green monkey kidney (Vero) cell line was tested as normal cells to determine the side effects of 5-fluorouracil. The results show that the optimal concentration of 5-fluorouracil is about 500 μM, which presents the best anticancer effect and mild side effects

    Intestinal bacteria—a powerful weapon for fungal infections treatment

    Get PDF
    The morbidity and mortality of invasive fungal infections are rising gradually. In recent years, fungi have quietly evolved stronger defense capabilities and increased resistance to antibiotics, posing huge challenges to maintaining physical health. Therefore, developing new drugs and strategies to combat these invasive fungi is crucial. There are a large number of microorganisms in the intestinal tract of mammals, collectively referred to as intestinal microbiota. At the same time, these native microorganisms co-evolve with their hosts in symbiotic relationship. Recent researches have shown that some probiotics and intestinal symbiotic bacteria can inhibit the invasion and colonization of fungi. In this paper, we review the mechanism of some intestinal bacteria affecting the growth and invasion of fungi by targeting the virulence factors, quorum sensing system, secreting active metabolites or regulating the host anti-fungal immune response, so as to provide new strategies for resisting invasive fungal infection

    Effect of extract from ginseng rust rot on the inhibition of human hepatocellular carcinoma cells in vitro

    Get PDF
    Hepatocellular carcinoma (HCC) is one of major leading causes of cancer death worldwide. As a traditional medicine, the anti-cancer function of ginseng is being growingly recognized and investigated. However, the effect of ginseng rust rot on human HCC is unknown yet. In this study, the HCC cells were treated with different parts of mountain cultivated ginseng rust rot and compared with human normal liver cells. The morphology, survival rate and β-actin expression of the cells were changed by introducing the ginseng epidermis during the incubation process. Notably, the results reveal that the ginseng epidermis can induce apoptosis by altering the morphologies of cells, indicating the practical implication for the HCC treatment and drug development

    Identification of Specific Nuclear Genetic Loci and Genes That Interact With the Mitochondrial Genome and Contribute to Fecundity in Caenorhabditis elegans

    Get PDF
    Previous studies have found that fecundity is a multigenic trait regulated, in part, by mitochondrial-nuclear (mit-n) genetic interactions. However, the identification of specific nuclear genetic loci or genes interacting with the mitochondrial genome and contributing to the quantitative trait fecundity is an unsolved issue. Here, a panel of recombinant inbred advanced intercrossed lines (RIAILs), established from a cross between the N2 and CB4856 strains of C. elegans, were used to characterize the underlying genetic basis of mit-n genetic interactions related to fecundity. Sixty-seven single nucleotide polymorphisms (SNPs) were identified by association mapping to be linked with fecundity among 115 SNPs linked to mitotype. This indicated significant epistatic effects between nuclear and mitochondria genetics on fecundity. In addition, two specific nuclear genetic loci interacting with the mitochondrial genome and contributing to fecundity were identified. A significant reduction in fecundity was observed in the RIAILs that carried CB4856 mitochondria and a N2 genotype at locus 1 or a CB4856 genotype at locus 2 relative to the wild-type strains. Then, a hybrid strain (CNC10) was established, which was bred as homoplasmic for the CB4856 mtDNA genome and N2 genotype at locus 1 in the CB4856 nuclear background. The mean fecundity of CNC10 was half the fecundity of the control strain. Several functional characteristics of the mitochondria in CNC10 were also influenced by mit-n interactions. Overall, experimental evidence was presented that specific nuclear genetic loci or genes have interactions with the mitochondrial genome and are associated with fecundity. In total, 18 genes were identified using integrative approaches to have interactions with the mitochondrial genome and to contribute to fecundity

    Templated assembly of micropatterned Au-Ni nanoparticles on laser interference-structured surfaces by thermal dewetting

    Get PDF
    This paper introduces a laser-interference-controlled electrochemical deposition method for direct fabrication of periodically micropatterned magnetite (Fe3O4) nanoparticles (NPs). In this work, Fe3O4 NPs were controllably synthesized on the areas where the photoconductive electrode was exposed to the periodically patterned interferometric laser irradiation during the electrodeposition. Thus, the micropattern of Fe3O4 NPs was controlled by interferometric laser pattern, and the crystallization of the particles was controlled by laser interference intensity and electrochemical deposition conditions. The bottom-up electro- chemical approach was combined with a top-down laser interference method- ology. This maskless method allows for in situ fabrication of periodically patterned magnetite NPs on the microscale by electrodeposition under room temperature and atmospheric pressure conditions. In the experiment, Fe3O4 NPs with the mean grain size below 100 nm in the pattern of 5-lm line array were achieved within the deposition time of 100 s. The experiment results have shown that the proposed method is a one-step approach in fabricating large areas of periodically micropatterned magnetite NPs.
    corecore