8 research outputs found

    Is There a Valence-Specific Pattern in Emotional Conflict in Major Depressive Disorder? An Exploratory Psychological Study

    Get PDF
    Objective: Patients with major depressive disorder (MDD) clinically exhibit a deficit in positive emotional processing and are often distracted by especially negative emotional stimuli. Such emotional-cognitive interference in turn hampers the cognitive abilities of patients in their ongoing task. While the psychological correlates of such emotional conflict have been well identified in healthy subjects, possible alterations of emotional conflict in depressed patients remain to be investigated. We conducted an exploratory psychological study to investigate emotional conflict in MDD. We also distinguished depression-related stimuli from negative stimuli in order to check whether the depression-related distractors will induce enhanced conflict in MDD. Methods: A typical word-face Stroop paradigm was adopted. In order to account for valence-specificities in MDD, we included positive and general negative as well as depression-related words in the study. Results: MDD patients demonstrated a specific pattern of emotional conflict clearly distinguishable from the healthy control group. In MDD, the positive distractor words did not significantly interrupt the processing of the negative target faces, while they did in healthy subjects. On the other hand, the depression-related distractor words induced significant emotional conflict to the positive target faces in MDD patients but not in the healthy control group. Conclusion: Our findings demonstrated for the first time an altered valence-specific pattern in emotional conflict in MD

    Developmental population neuroscience: emerging from ICHBD`

    No full text
    The 3rd International Conference on Human Brain Development(ICHBD)was held during October 10&ndash;15,2017 in Nanning,Guangxi,China.ICHBD was initiated in 2014 by Drs.Xi-Nian Zuo,Olaf Sporns and Michael P.Milham(co-chairs),and has been consistently supported by a major international collaboration grant from Natural Science Foundation of China(81220108014).The goal of ICHBD is to bring together international scientists from a range&nbsp;</p

    Charting brain growth in tandem with brain templates at school age

    Get PDF
    Brain growth charts and age-normed brain templates are essential resources for researchers to eventually contribute to the care of individuals with atypical developmental trajectories. The present work generates age-normed brain templates for children and adolescents at one-year intervals and the corresponding growth charts to investigate the influences of age and ethnicity using a common pediatric neuroimaging protocol. Two accelerated longitudinal cohorts with the identical experimental design were implemented in the United States and China. Anatomical magnetic resonance imaging (MRI) of typically developing school-age children (TDC) was obtained up to three times at nominal intervals of 1.25 years. The protocol generated and compared population- and age-specific brain templates and growth charts, respectively. A total of 674 Chinese pediatric MRI scans were obtained from 457 Chinese TDC and 190 American pediatric MRI scans were obtained from 133 American TDC. Population- and age-specific brain templates were used to quantify warp cost, the differences between individual brains and brain templates. Volumetric growth charts for labeled brain network areas were generated. Shape analyses of cost functions supported the necessity of age-specific and ethnicity-matched brain templates, which was confirmed by growth chart analyses. These analyses revealed volumetric growth differences between the two ethnicities primarily in lateral frontal and parietal areas, regions which are most variable across individuals in regard to their structure and function. Age- and ethnicity-specific brain templates facilitate establishing unbiased pediatric brain growth charts, indicating the necessity of the brain charts and brain templates generated in tandem. These templates and growth charts as well as related codes have been made freely available to the public for open neuroscience (https://github.com/zuoxinian/CCS/tree/master/H3/GrowthCharts). (C) 2020 Science China Press. Published by Elsevier BV. and Science China Press.</p

    Charting brain growth in tandem with brain templates for schoolchildren

    No full text
    Brain growth charts and age-normed brain templates are essential resources for researchers to eventually contribute to the care of individuals with atypical developmental trajectories. The present work generates age-normed brain templates for children and adolescents at one-year intervals and the corresponding growth charts to investigate the influences of age and ethnicity using a common pediatric neuroimaging protocol. Two accelerated longitudinal cohorts with the identical experimental design were implemented in the United States and China. Anatomical magnetic resonance imaging (MRI) of typically developing school-age children (TDC) was obtained up to three times at nominal intervals of 1.25 years. The protocol generated and compared population- and age-specific brain templates and growth charts, respectively. A total of 674 Chinese pediatric MRI scans were obtained from 457 Chinese TDC and 190 American pediatric MRI scans were obtained from 133 American TDC. Population- and age-specific brain templates were used to quantify warp cost, the differences between individual brains and brain templates. Volumetric growth charts for labeled brain network areas were generated. Shape analyses of cost functions supported the necessity of age-specific and ethnicity-matched brain templates, which was confirmed by growth chart analyses. These analyses revealed volumetric growth differences between the two ethnicities primarily in lateral frontal and parietal areas, regions which are most variable across individuals in regard to their structure and function. Age- and ethnicity-specific brain templates facilitate establishing unbiased pediatric brain growth charts, indicating the necessity of the brain charts and brain templates generated in tandem. These templates and growth charts as well as related codes have been made freely available to the public for open neuroscience (https://github.com/zuoxinian/CCS/tree/master/H3/GrowthCharts)
    corecore