52 research outputs found

    Optimal Cost-Effective Maintenance Policy for a Helicopter Gearbox Early Fault Detection under Varying Load

    Get PDF
    Most of the existing fault detection methods rarely consider the cost-optimal maintenance policy. A novel multivariate Bayesian control approach is proposed, which enables the implementation of early fault detection for a helicopter gearbox with cost minimization maintenance policy under varying load. A continuous time hidden semi-Markov model (HSMM) is employed to describe the stochastic relationship between the unobservable states and observable observations of the gear system. Explicit expressions for the remaining useful life prediction are derived using HSMM. Considering the maintenance cost in fault detection, the multivariate Bayesian control scheme based on HSMM is developed; the objective is to minimize the long-run expected average cost per unit time. An effective computational algorithm in the semi-Markov decision process (SMDP) framework is designed to obtain the optimal control limit. A comparison with the multivariate Bayesian control chart based on hidden Markov model (HMM) and the traditional age-based replacement policy is given, which illustrates the effectiveness of the proposed approach

    Mean change-point model for aero-engine component faults

    Get PDF
    Recognizing aero-engine component faults is important in prognostics and health management research, particularly in engine monitoring systems and condition-based maintenance. The former primarily concentrates on recognizing engine working parameters and component performance, and neglects quantitative changes in component faults. Taking lubricating oil consumption as an example, quantitative changes in component faults are analyzed using a mean change-point model based on change-point theory. The change-point stage is presented through the minimum variance algorithm. The change point corresponding to the failure mode is tested using exhaust electrostatic data from a turbojet engine life span experiment to verify the validity and feasibility of the theory

    Damage localization in beams based on the analysis of modal parameters

    Get PDF
    This paper presents a two-step method for damage localization in beams by combining natural frequencies and mode shapes. The general locations of the damage are first identified from an indicator developed using relative natural frequency change (RNFC) curves and the values of RNFCs. A curvature-mode-shape-based method is then utilized to determine the specific location of the damage in the second step. The proposed two-step method is verified by detecting damage in a simulated simply-supported beam. The identified damage location agrees well with the actual damage location. A strategy for fast and accurate damage localization based on general localization using natural frequencies and specific localization using mode shapes is the main novelty of the paper

    Reliability sequential compliance method for a partially observable gear system subject to vibration monitoring

    Get PDF
    Assumptions accompanying exponential failure models are often not met in the standard sequential probability ratio test (SPRT) of many products. However, for most of the mechanical products, Weibull distribution conforms to their life distributions better compared to other techniques. The SPRT method for Weibull life distribution is derived in this paper, which enables the implementation of reliability compliance tests for gearboxes. Using historical failure data and condition monitoring data, a life prediction model based on hidden Markov model (HMM) is established to describe the deterioration process of gearboxes, then the predicted remaining useful life (RUL) is transformed into failure data that is used in SPRT for further analysis, which can significantly save on testing time and reduce costs. Explicit expression for the distribution of RUL is derived in terms of the posterior probability that the system is in the unhealthy state. The predicted and actual values of the residual life are compared, and the average relative error is 3.90 %, which verifies the validity of the proposed residual life prediction approach. A comparison with other life prediction and SPRT methods is given to elucidate the efficacy of the proposed approach

    Experimental investigation on electrostatic monitoring technology for civil turbofan engine

    Get PDF
    This study analyzes the necessity, development, and principles of aero-engine electrostatic monitoring technology. An electrostatic sensor with specific size is assembled in the exhaust nozzle of an RB-211 turbofan engine located near the low-pressure turbine outlet, a stress checking procedure for safety is conducted. Two test program cycles are included in the whole experimental process. Electrostatic signal processing flow is presented, and feature parameters used for analysis are root-mean-square (RMS), activity level (AL), negative event rate (NER), positive event rate (PER), kurtosis, impulse factor, and absolute mean value. Thrust is used to parameterize the working conditions of the turbofan engine. Moreover, data fitting is conducted to determine the relations between feature and performance parameters. Accordingly, lubrication oil leakage fault and fuel-rich combustion condition are detected in two test run cycles, which result in the appearance of abnormal signals. The AL, RMS, and absolute mean values exhibit similar trends with the change in thrust. A positive linear correlation is also observed between the AL and the thrust in the varying thrust test period. The method of blade-casing rubbing fault recognition is discussed. Experiment results show that the electrostatic sensor is very sensitive to large-sized charged particles in the exhaust emissions

    Meta-analysis Followed by Replication Identifies Loci in or near CDKN1B, TET3, CD80, DRAM1, and ARID5B as Associated with Systemic Lupus Erythematosus in Asians

    Get PDF
    Systemic lupus erythematosus (SLE) is a prototype autoimmune disease with a strong genetic involvement and ethnic differences. Susceptibility genes identified so far only explain a small portion of the genetic heritability of SLE, suggesting that many more loci are yet to be uncovered for this disease. In this study, we performed a meta-analysis of genome-wide association studies on SLE in Chinese Han populations and followed up the findings by replication in four additional Asian cohorts with a total of 5,365 cases and 10,054 corresponding controls. We identified genetic variants in or near CDKN1B, TET3, CD80, DRAM1, and ARID5B as associated with the disease. These findings point to potential roles of cell-cycle regulation, autophagy, and DNA demethylation in SLE pathogenesis. For the region involving TET3 and that involving CDKN1B, multiple independent SNPs were identified, highlighting a phenomenon that might partially explain the missing heritability of complex diseases

    Roller Bearing Performance Degradation Assessment Based on Fusion of Multiple Features of Electrostatic Sensors

    No full text
    This paper presents a new method to assess the performance degradation of roller bearings based on the fusion of multiple features, with the aim of improving the early degradation detection ability of the electrostatic monitoring system. At first, a set of feature parameters of the electrostatic monitoring system indicating the normal state of the bearings are extracted from the perspective of the time domain, frequency domain and complexity. Then, the parameter set is processed to reduce the dimensions and eliminate the redundancy using spectral regression. With the processed features, a Gaussian mixed model is established to gauge the health of the bearing, providing the distance value obtained using Bayesian inference as a quantitative indicator for assessing the performance degradation. The method is applied to access the life of a bearing in which the mechanic fatigue is artificially accelerated. The test results show that the proposed method can better reflect the degradation process of the bearing compared to other evaluation methods. This enables the electrostatic monitoring technique to detect the degradation of the bearing earlier than the vibration monitoring, providing a powerful tool for the condition monitoring of roller bearings

    Electrostatic Sensor Application for On-Line Monitoring of Wind Turbine Gearboxes

    No full text
    The oil-line electrostatic sensor (OLES) is a new online monitoring technology for wear debris based on the principle of electrostatic induction that has achieved good measurement results under laboratory conditions. However, for practical applications, the utility of the sensor is still unclear. The aim of this work was to investigate in detail the application potential of the electrostatic sensor for wind turbine gearboxes. Firstly, a wear debris recognition method based on the electrostatic sensor with two-probes is proposed. Further, with the wind turbine gearbox bench test, the performance of the electrostatic sensor and the effectiveness of the debris recognition method are comprehensively evaluated. The test demonstrates that the electrostatic sensor is capable of monitoring the debris and indicating the abnormality of the gearbox effectively using the proposed method. Moreover, the test also reveals that the background signal of the electrostatic sensor is related to the oil temperature and oil flow rate, but has no relationship to the working conditions of the gearbox. This research brings the electrostatic sensor closer to practical applications

    Remaining useful life prognostics for aeroengine based on superstatistics and information fusion

    Get PDF
    AbstractRemaining useful life (RUL) prognostics is a fundamental premise to perform condition-based maintenance (CBM) for a system subject to performance degradation. Over the past decades, research has been conducted in RUL prognostics for aeroengine. However, most of the prognostics technologies and methods simply base on single parameter, making it hard to demonstrate the specific characteristics of its degradation. To solve such problems, this paper proposes a novel approach to predict RUL by means of superstatistics and information fusion. The performance degradation evolution of the engine is modeled by fusing multiple monitoring parameters, which manifest non-stationary characteristics while degrading. With the obtained degradation curve, prognostics model can be established by state-space method, and then RUL can be estimated when the time-varying parameters of the model are predicted and updated through Kalman filtering algorithm. By this method, the non-stationary degradation of each parameter is represented, and multiple monitoring parameters are incorporated, both contributing to the final prognostics. A case study shows that this approach enables satisfactory prediction evolution and achieves a markedly better prognosis of RUL
    corecore