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Abstract. Recognizing aero-engine component faults is important in prognostics and health 

management research, particularly in engine monitoring systems and condition-based 

maintenance. The former primarily concentrates on recognizing engine working parameters and 

component performance, and neglects quantitative changes in component faults. Taking 

lubricating oil consumption as an example, quantitative changes in component faults are analyzed 

using a mean change-point model based on change-point theory. The change-point stage is 

presented through the minimum variance algorithm. The change point corresponding to the failure 

mode is tested using exhaust electrostatic data from a turbojet engine life span experiment to verify 

the validity and feasibility of the theory. 

Keywords: turbojet engine, condition-based maintenance, change-point recognition, oil 
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1. Introduction 

Ensuring flight safety through accurate and timely monitoring of aero-engine working state is 

a significant precondition. Recognizing aero-engine component faults is important in prognostics 

and health management [1] research, particularly in engine monitoring systems and 

condition-based maintenance [2]. The former primarily concentrates on recognizing analytical 

relationships between component parameters and performance [3-8], and neglects quantitative 

changes in component states. Quantitative changes are preconditions and provisions for qualitative 

changes, and qualitative changes increase with increasing quantitative changes [9]. Accordingly, 

quantitative changes should be studied for real-time recognition of engine working state. 

Change-point theory [10] has been recently developed to study quantitative changes in nonlinear 

statistical theory. Based on the mean change-point algorithm, the change point is found to exist 

with lubricating oil consumption (OC) data. In addition, real-time data from electrostatic sensors 

are collected to verify corresponding faults and to determine whether the engine is abnormal. 

2. Presentation of change-point model 

Change point is ubiquitous in nature and in the social fields. It reflects changes in inherent law 

and in the process involved in the transformation of quantitative to qualitative changes. The 

change point is generally the aspect that suddenly changes in a certain model. This problem 

comprises a series of observed values (samples). In most cases, these values are arranged in 

chronological order. The point at which the distribution or statistical characteristics of samples 

suddenly change is called the change point. In addition, sample distribution is dependent on spatial 

parameters. The change point is the position in space or interface. It is equal to the time variable 

in one-dimensional space. 

3. Oil consumption change-point model  

3.1. Mean change-point model 

Mean change-point model, which is feasible and convenient in practical applications, is 

applied in this study. Supposing 𝑋 is the lubricating OC per hour, 𝑋𝑡 = 𝑎𝑡 + 𝑒𝑡; 𝑡 = 1, 2, … , 𝑁; 



1074. MEAN CHANGE-POINT MODEL FOR AERO-ENGINE COMPONENT FAULTS.  

YU FU, HONGFU ZUO, JING CAI, YIBING YIN 

1628 © VIBROENGINEERING. JOURNAL OF VIBROENGINEERING. DECEMBER 2013. VOLUME 15, ISSUE 4. ISSN 1392-8716  

𝑎1 = 𝑎𝑚1−1… = 𝑏1; 𝑎𝑚1 = 𝑎𝑚2−1… = 𝑏2; 𝑎𝑚𝑞 = ⋯ = 𝑎𝑛… = 𝑏𝑞+1; 1 < 𝑚1 < 𝑚2 < ⋯ < 𝑚𝑞 < 𝑛. 𝑚𝑗 

is the change point. 𝑒1, 𝑒2, … , 𝑒𝑛 is the random error of the model.  

3.2. Minimum variance method to change point 

Whether the change point exists, that is: 

Original hypothesis 𝐻0: 𝑏1 = 𝑏2 = ⋯ = 𝑏𝑞+1.  

If 𝐻0 is accepted, a change point does not exist.  

If 𝐻0  is rejected, at least one change point exists in the data sequence. The data sequence 

contains 𝑞 point. Accordingly, change points 𝑚1, 𝑚2, … , 𝑚𝑞 can be estimated. 

The small probability principle was applied to this hypothesis testing. The allowable small 

probability, which was judged as the boundary before identification, was at significance level 𝛼. 

In statistics, 𝛼 stands for the size of I-type error. That is, if the original hypothesis is accepted, 𝛼 

is the rejection probability. In this study, the significant level 𝛼 is 0.05, and the corresponding 

confidence interval is 95 %. 

OC: 𝑋1, 𝑋2, … , 𝑋𝑁 is independent from each other; 𝑡 is the time interval per unit. The following 

are the steps for the minimum variance method of searching for change points. 

(1) With 𝑖 = 2, … , 𝑁, the sample is divided into two sections: 𝑋1, 𝑋2, … , 𝑋𝑖−1 and 𝑋𝑖, 𝑋𝑖+1, … , 𝑋𝑁. 

Then, the arithmetic mean values 𝑋̅𝑖1, 𝑋̅𝑖2 and the statistics of each sample section are calculated 

as follows: 

𝑆𝑖 = ∑(𝑥𝑡 − 𝑋̅𝑖1

𝑖−1

𝑡=1

)2 + ∑(𝑥𝑡 − 𝑋̅𝑖2

𝑁

𝑡=𝑖

)2. (1) 

(2) Calculating the statistics is as follows: 

𝑋̅ = ∑ 𝑥𝑡 𝑁⁄

𝑁

𝑡=1

,   and   𝑆 = ∑(𝑥𝑡 − 𝑋̅)2

𝑁

𝑡=1

. (2) 

(3) Calculating the expected value is as follows: 

𝐸(𝑆 − 𝑆𝑖) = 𝐸(𝑁−1(𝑖 − 1)(𝑁 − 𝑖 + 1)(𝑋̅𝑖1 − 𝑋̅𝑖2)2)
= 𝜎2 + 𝑁−1(𝑖 − 1)(𝑁 − 𝑖 + 1)(𝐸𝑋̅𝑖1 − 𝐸𝑋̅𝑖2)2,   𝑖 = 2, 3, . . . , 𝑁. 

(3) 

(4) Calculating the maximum value is as follows: 

𝐸(𝑆 − 𝑆∗) = max
2≤𝑖≤𝑁

𝐸(𝑆 − 𝑆𝑖), (4) 

where 𝑆∗ = min(𝑆2, . . . , 𝑆𝑁). 
(5) Taking 𝛼 as the significant level of inspection, the value of 𝐶 is calculated [10]. 

The following can be obtained using probability limit theorems: 

lim
𝑛→∞

𝑃 (
𝑆 − 𝑆∗

𝜎2
< 2lnln𝑛 + lnlnln𝑁 − ln𝜋 + 𝑧) = exp (−2𝑒−

𝑧
2). (5) 

If sigma-squared is known for the given 𝛼 > 0, then exp (−2𝑒−
𝑧

2) = 1 − 𝛼. The solution is 

as follows: 

𝐶 = 𝜎2(2lnln𝑁 + lnlnln𝑁 − ln𝜋 − 2 ln(−0.5 ln(1 − 𝛼))). (6) 
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If sigma-squared is unknown in the preceding equation, then the estimation is conducted as 

follows: 

𝜎̂2 = 𝑆∗ (𝑁 − 2lnln𝑁 − lnlnln𝑁 − 2.4)⁄ . (7) 

(6) If 𝑆 − 𝑆∗ > 𝐶, 𝐻0 is negative, i.e., a change point exists; otherwise, 𝐻0 is accepted.  

For simplicity, 𝑞 = 1 in this study. This change point can be estimated from Equations (1) to 

(7), and the change point estimated value of OC 𝑚̂ is the corresponding value 𝑖 of 𝑆∗. 

4. Model applications 

4.1. Data source 

Data came from an aviation turbojet engine [11]. The experimental engine was tested for a life 

span of 200 h in July 2011, and data were collected during the 200 h life span test (an additional 

40 h was provided after the 200 h, giving a total of 240 h), with each test having 1 h per stage. 

Figure 1 shows OC data from stages 95 to 117, and in this paper 𝑁 = 23. These data were tested 

using the change-point algorithm, whereas electrostatic data were obtained to analyze and verify 

the change point. 

 
Fig. 1. Lubrication oil consumption from stages 95 to 117 
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Fig. 2. The searching flowchart 
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4.2. Algorithm process 

The change point with the algorithm is shown in the minimum variance method, and the 

flowcharts are shown in Fig. 2. 

4.3. Experimental results 

The test level 𝛼 was set to 0.05 in the simulation. The results show a change point in OC in the 

106th stage according to the algorithm and searching flowchart (Table 1). 

Table 1. Test results of the change point 

Average OC on  

the change point (ml) 
𝛼 𝑆 𝑆∗ 𝐶 

Change point  

time 
𝑆 − 𝑆∗ > 𝐶 (Y/N) 

186 0.05 1188.222 1187.564 0.374 106th stage Y 

The average OC was 186 ml within the 106th time interval. A lubricating oil leakage fault was 

speculated. Inspection revealed oil leakage at the starter generator. After replacing the sealing ring 

and reinstalling the starter generator, the 107th stage was started for testing. OC obviously 

decreased, and the test results of the change point corresponded with the actual condition. 

4.4. Verification tests 

4.4.1. Electrostatic statistical signals  

Electrostatic statistical signals were analyzed to describe the correctness of change-point 

testing and to distinguish differences between normal signals and gas oil leakage fault signals 

when oil data changed. Electrostatic data were used to detect electrostatic particles in engine 

exhaust [12-14]. The principle states that abnormal particles are engendered in excessive oil 

leakage, rubbing, and other anomalies in gas path components. These abnormal particles change 

the level of charged particles in the gas path. 

Data came from an aviation turbojet engine. The experimental engine started to test for 200 h 

life span in July 2011, and the data were carried out during the 200 h life span test (there were an 

additional 40 hours after 200 h, totally 240 hours), each test 1 h as a stage. 

In the present test, the 105th, 106th, and 107th stages represent the normal signal, fault signal, 

and the signal after fault exclusion, respectively. In addition, the root mean square (RMS), 

clearance factor (CLf), impulsion factor (If), and signal waveform factor (Sf) were discussed. 

These parameters were more sensitive to electrostatic signal fault in time domain. The calculation 

results are shown in Figs. 3 to 6.  

  
Fig. 3. The RMS of electrostatic signals Fig. 4. The CLf of electrostatic signals 
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Fig. 5. The If of electrostatic signals Fig. 6. The Sf of electrostatic signals 

Under normal working conditions, the base line of the time-domain signal was maintained at 

the millivolt level, and the normal charge of particles was 0.3 pc to 0.5 pc. The abnormal pulse 

emerged within the 106th stage of the test; V-level signals even appeared. In addition, the activity 

level of the 106th stage appeared relatively larger. The activity level was the effective value of the 

induction charge at a certain time interval. The activity level changed simultaneously with oil 

leakage. The activity level from the 95th to 105th stages went steadily; however, that in the 106th 

stage significantly increased, along with a large number of outliers. After troubleshooting, activity 

levels declined. 

Event rate indicates larger particles in the gas exhaust (greater than 40 micron particles). 

According to the polarity difference in charged particles, event rate can either be positive or 

negative. A positive event rate denotes non-metallic particles, whereas a negative event rate 

represents large metal particles. Several positive event rate points appeared in the 106th stage, 

thus indicating the presence of large non-metallic particles. This finding could be attributed to the 

improper installation of the engine starting motor, which resulted in lubricating oil leakage in the 

gas path. The oil was inhaled into the combustion chamber with high-temperature air. A negative 

effect was exerted on combustion performance. Meanwhile, a negative event rate remained at 

approximately 2 %, with almost no abnormal metal particle. 

The RMS stands for signal average power in unit time. Figure 3 shows that the electrostatic 

signal RMS in the 106th stage is greater than that in the 107th and 105th stages. Moreover, the 

RMS in the 107th stage is slightly greater than that in the 105th stage. This finding indicates that 

oil leakage in the gas path increases RMS signal. After troubleshooting, the effects of the faults 

are difficult to eliminate within a short period. 

CLf, If and Sf were introduced to represent the characteristics of failures and to express the 

change-point pulse of the electrostatic signals. Figures 4 to 6 show that the frequency and number 

of abnormal points in CLf, If and Sf appeared analogously in the 106th and 107th stages. These 

statistical parameters of the signals indicate that early faults occurred in these stages, which were 

different from the normal electrostatic signal in the 105th stage. In fact, although the change point 

occurred in the 106th stage, the residual oil particles in the gas path must have resulted in abnormal 

points in the 107th stage. 

4.4.2. SPSS statistical analysis 

The statistical analysis by SPSS [15] have confirmed the assumed conditions of Gaussian law 

and relationship between OC and electrostatic particles in the flow. Taking electrostatic signal 

data as dependent variable, oil consumption as variable, regression analysis is established by SPSS, 

results are given as in Table 2 and 3. 

Model 1 indicates the regression model formed by electrostatic signal data ( 𝐸 ) and oil 

app:ds:assumed
app:ds:condition
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consumption (OC). The value of Adjusted 𝑅2 is 0.865, nearly 1, which indicates the fitting degree 

of model 1 is acceptable. Moreover, the Durbin-Watson value is 1.947, nearly 2, thus, random 

error 𝑒𝑖 is independent. 

Table 2. Model correlation description and residual series independence tests 

Model 𝑅 𝑅2 Adjusted 𝑅2 Durbin-Watson 

1 0.934 0.871 0.865 1.947 

Table 3. Residuals statistics 

 Minimum Maximum Mean N 

Predicted Value -2.0840 19.8487 1.1094 23 

Residual -3.55687 2.85132 0.00000 23 

Std. Predicted Value -0.723 4.244 0.000 23 

Std. Residual -2.050 1.643 0.000 23 

From Table 3, both mean residual and mean standard residual was 0.000 in residuals statistics, 

thus indicating that the residual distribution satisfies the zero mean assumption, i.e., 𝐸(𝑒𝑖) = 0.  

5. Conclusions 

OC with its quantity change point occurring time is analyzed according to actual aero-engine 

test data. Combined with change-point theory and advanced electrostatic induction technology, 

the change point corresponding to the failure mode is verified. The conclusions are given as 

follows. 

(1) Searching for change points can effectively detect quantitative change occurring time of 

component states, which can be considered as advanced monitoring before qualitative faults. 

Based on the aforementioned algorithm, any abnormality in engine working condition can be 

detected early for condition-based maintenance. 

(2) The results exhibited a change point for OC in the 106th stage during the life span test. 

After the 106th commissioning, an obvious oil trace was found in the path inlet. Engineers inferred 

the presence of oil leakage on the sealed portion of the starter generator. After replacing the sealing 

ring and reinstalling the starter generator, OC decreased in the 107th stage, and the fault was 

eliminated. 

(3) Electrostatic induction signal confirmed the presence of a corresponding fault. Although 

the electrostatic pulse signal appeared in the 106th stage and in other stages, differences in pulse 

amplitude, time (more than 0.5 V pulse, for example), and emerging time were observed. The 

pulse maximum amplitude in the 106th stage was 3.25 V, thus demonstrating oil leakage. 

(4) Electrostatic signal fault characteristics of lubricating oil leakage showed that the RMS 

value in the 106th stage of the change point was higher. In addition, the frequency and number of 

abnormal points in CLf, If, and Sf appeared frequently in the 106th stage, thus suggesting that 

early faults occurred in this stage. Although OC was decreased, abnormal points still occurred in 

CLf, If, and Sf because the effects of faults (i.e., residual oil particles in the gas path) were difficult 

to eliminate within a short period. As a result, abnormal points appeared in the 107th stage. 
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