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Abstract Remaining useful life (RUL) prognostics is a fundamental premise to perform condition-

based maintenance (CBM) for a system subject to performance degradation. Over the past decades,

research has been conducted in RUL prognostics for aeroengine. However, most of the prognostics

technologies and methods simply base on single parameter, making it hard to demonstrate the spe-

cific characteristics of its degradation. To solve such problems, this paper proposes a novel

approach to predict RUL by means of superstatistics and information fusion. The performance

degradation evolution of the engine is modeled by fusing multiple monitoring parameters, which

manifest non-stationary characteristics while degrading. With the obtained degradation curve,

prognostics model can be established by state-space method, and then RUL can be estimated when

the time-varying parameters of the model are predicted and updated through Kalman filtering algo-

rithm. By this method, the non-stationary degradation of each parameter is represented, and multi-

ple monitoring parameters are incorporated, both contributing to the final prognostics. A case

study shows that this approach enables satisfactory prediction evolution and achieves a markedly

better prognosis of RUL.
ª 2014 Production and hosting by Elsevier Ltd. on behalf of CSAA & BUAA.
Open access under CC BY-NC-ND license.
1. Introduction

The statistics analysis1 on China civil aviation incidents from
2006 to the first half of 2012 shows that, the number of flight
incidents in the first half of 2012 appears a year-on-year

growth of 26%. Importantly, the number of these incidents
simply caused by engine cut-off rises 83%. Apparently, as

the heart of an aircraft, aeroengine directly determines flight
safety, thus needs to be repaired or replaced promptly. How-
ever, premature repair or replacement will inevitably lead to

an increase in airlines’ operation cost. Therefore, the condi-
tion-based maintenance (CBM) should be performed at a per-
fect moment, which can be identified according to the balance

between safety and efficiency. To achieve this goal, more and
more attention has been paid to remaining useful life (RUL)
prognostics for aeroengine.

Considering the fact that taking time-consuming and

repeated tests for an aeroengine is not affordable, research
relying on monitoring parameters has been conducted in
RUL prognostics using a variety of methodologies. The basis
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of these methodologies is going through a transition from sin-
gle parameter to multiple parameters, which is shown in the
following discussion.

In order to infer remaining useful life, fatigue crack growth
function is created based on Paris model in Ref.2. A certain
component is adopted for RUL prognostics by applying

Bayesian framework in updating the parameters of its expo-
nential degradation model.3 Furthermore, exhaust gas temper-
ature margin (EGTM) is taken as a measure of the engine’s

hidden health state, and the estimation is carried out through
combining Bayesian approach with immune particle swarm
optimization algorithm.4 According to the evolution of
EGTM, a performance degradation model is developed in

Ref.5. However, all the methodologies mentioned above only
take into account single parameter thus suffering from inaccu-
racy, which makes the prognosis of RUL unacceptable for

CBM. Hence, to take the increasing complexity and integra-
tion of aeroengine into consideration, multiple parameters
are utilized to achieve higher prediction accuracy in other stud-

ies. Multivariate time series analysis method is developed to
estimate the performance reliability of the system by means
of multiple failure modes.6 Principal components method is

adopted in the performance degradation analysis in Ref.7.
With several accelerating variables, a stochastic process describ-
ing degradation is combined into a generalized cumulative dam-
age approach, and new accelerated life test models are presented

in Ref.8. Multivariate Wiener process is made use of in Ref.9,
assuming the variables are independent from each other. While,
the correlation between multiple performance parameters is

taken into account in the establishment of reliability assessment
model in Ref.10, and the accuracy of this approach is testified
via simulation. Furthermore, multiple degradation characteris-

tics are applied in reliability analysis in Ref.11.
Besides this transition, the specific techniques and methods

of the prognostics are being developed from traditional ones to

artificial intelligence. Traditionally, prognostics have been
achieved through data fitting and regression analysis.12,13

While, artificial intelligence is shown in the application of Kal-
man filtering algorithm,14 neural networks combined with cha-

otic particle swarm optimization,15 Bayesian state estimation
combined with state-space method et al.16 In comparison, arti-
ficial intelligence methods are superior in terms of automatic

calculation.
Nevertheless, the methodologies described above have not

taken into account the non-stationary degradation process of

the system. There is a pressing need to demonstrate the realistic
degradation characteristics in order to achieve higher predic-
tion accuracy.

Non-stationary process is defined as a stochastic process

whose joint probability distribution changes when shifted in
time or space. Generally, the distribution function of the
observed degradation data of aeroengine shows no change,

but the parameters of the function differ within different time
windows. To be specific, the observed data changes slowly in
early degradation and rapidly in severe degradation which

indicates failure. Obviously, the degradation process of the
engine is absolutely non-stationary.17–19 Research on the vari-
ation of the parameters of the distribution function for non-

stationary time series is exactly the application of superstatis-
tics theory, also known as ’’statistics of statistics’’. This theory
is originally proposed by Christian Beck et al in 2003, and then
utilized to describe complex non-equilibrium systems.
Superstatistics theory is initially and mainly applied to dynam-
ical systems, and then adopted in the analysis of cosmic rays,
regional climate, anomaly detection of network traffic and

other fields. The most significant advantage of resorting to this
theory is that it enables the presentation of the non-stationary
characteristics of the degrading system.

In order to overcome the limitations of the existing meth-
odologies, this paper presents a novel approach to RUL
prognostics by means of superstatistics and information

fusion. In this method, the non-stationary degradation pro-
cesses of multiple parameters are incorporated in the estab-
lishment of the prognostics model, and the calculation is
achieved by Kalman filtering algorithm, thereby enabling

high prediction accuracy.

2. Prognostics framework

The novel approach to RUL prognostics is proposed on the
basis of the considerations described as follows:

(1) For the purpose of tracking the realistic degradation
evolution process of the engine, the non-stationary char-
acteristics of each monitoring parameter should be taken

into account.
(2) To avoid the disadvantages, such as inaccuracy, caused

by methodologies which simply depend on single param-

eter, multiple monitoring parameters should be fused
based on their correlations.

(3) As the observed data is contaminated with noise, it is
better to add noise factor into calculation in order to

guarantee prediction accuracy.
(4) Considering the time-varying characteristics of the entire

non-stationary degradation process, RUL determina-

tion should be made in accordance with the consecu-
tively introduced observations.

According to the understandings presented above, RUL
prognostics framework is constructed in Fig. 1.

3. Degradation description based on superstatistics and

information fusion

Generally speaking, the inherent health state of aeroengine is

invisible, but with the increase of service time, it will be
reflected on the variation of the performance monitoring
parameters, including gas path performance monitoring
parameters, lubrication oil parameters and vibration monitor-

ing parameters.20 Experientially, gas path performance moni-
toring parameters play a decisive role in measuring the
underlying health state, because with the degradation of the

system, the temperature and pressure on gas path components
will gradually approach their threshold values, respectively.
Accordingly, this paper adopts seven characterization param-

eters21 from gas path components for prognostics. These char-
acterization parameters are total temperature at low pressure
compressor (LPC) outlet (T24, �R), total temperature at high

pressure compressor (HPC) outlet (T30, �R), total temperature
at low pressure turbine (LPT) outlet (T50, �R), total pressure in
bypass duct (P15, psia), total pressure at HPC outlet
(P30, psia), physical fan speed (Nf, r/min) and physical core

speed (Nc, r/min).



Fig. 1 RUL prognostics framework for aeroengine.
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Due to the complexity of the engine, it is necessary to take

stationarity test for performance parameters. Stationarity
refers to the characteristics of a stochastic process whose statis-
tical properties, such as the mean and the variance, do not

change over time or position.22,23 Otherwise, it is called non-
stationary process which usually shows a linear or cyclical
trend. Stationarity test is to identify whether the observed time
series of these monitoring parameters are stationary or not.

The analysis of the observed data from T24 indicates that the
temperature shows an increase of 0.5 �R during the first 200
cycles (blue dotted line), while 1 �R within the following 100

cycles (red dotted line). Obviously, the mean and the variance
of this degradation process change significantly over time,
meaning that the observed time series of T24 are non-station-

ary. The non-stationary time series from T24 is given in Fig. 2.
If the prognostics approach starts with unprocessed non-

stationary time series regardless of the existing anomaly, there
will be two problems. First, the realistic performance degrada-

tion level cannot be accurately revealed, because the anoma-
lous behavior of the system is not taken into account while
constructing training sample set. Second, due to the uncer-

tainty of the anomaly, it is hard to infer the degradation trend
thus leading to inaccurate prediction.

To address these problems, superstatistics theory is com-

bined into the novel approach. Superstatistics theory refers
to the statistics of statistics, and it is performed to study the
original time series by investigating the statistical properties

of the stationary time series generated through division of
the non-stationary time series. Slow variable is a relatively core
concept of superstatistics theory, and also an intuitive expres-
sion of it. The so called slow variable refers to the powerful

fluctuations of a system in a large time scale, which determines
the inherent change of the system. In the anomaly detection of
network traffic, superstatistics theory has been taken into full
Fig. 2 Non-stationary time series from T24.
application. Firstly, the time window is divided according to

the distribution of the time series. Secondly, distribution model
is constructed based on the statistical properties of the
observed data within each time window. Ultimately, the

parameters of the statistical model are identified as slow vari-
ables, which are used to detect anomaly. This case makes it
clear that traditional applications of superstatistics theory have
to assume a distribution model for the observed data, and then

take the parameters of the model as slow variables to realize
anomaly detection. Hence, there are two challenges for tradi-
tional approaches. First, an appropriate distribution model

does not always exist for all kinds of time series; second, the
tedious inspection process of the distribution model may result
in computational complexity. To avoid such problems, super-

statistics can be utilized differently in this paper according to
the following procedure. In the first place, a segmentation
algorithm is utilized to divide the time window of the non-sta-
tionary time series into several time windows where the time

series are stationary. Then, the change rates of the time series
within different time windows are directly taken as slow vari-
ables to pinpoint anomaly. The break points used to divide

the whole time window are obtained by means of Bernaola
Galvan’s heuristic segmentation algorithm (BG algo-
rithm).24,25 The equations of BG algorithm are given by

SDðiÞ ¼
ðN1ðiÞ � 1ÞS1ðiÞ2 þ ðN2ðiÞ � 1ÞS2ðiÞ2

N1ðiÞ þN2ðiÞ � 2

" #1
2

� 1

N1ðiÞ
þ 1

N2ðiÞ

� �1
2

TðiÞ ¼ u1ðiÞ � u2ðiÞ
SDðiÞ

����
����

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð1Þ

where N1(i) and N2(i) denote the numbers of time points of
the left and right part of point i(i is a positive integer,

i= 1, 2, . . . , N � 1, and N is the number of time points.),
respectively; u1(i) and u2(i) are the mean values of each part;
S1 (i) and S2(i) are the standard deviations of each part;
SD(i) is called combined standard deviation; T(i) denotes test

statistics which indicates the difference of the two parts, and
the bigger T(i) is, the more different the distribution character-
istics of the two parts are.

This algorithm is targeted at performing anomaly detection
within the whole time window by identifying the maximum
T(i) which corresponds to the break point i. Then i is used

to divide the whole time window into two, meaning the
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non-stationary time series become two parts of relatively
stationary ones. If the time series within each time window
are still non-stationary, the segmentation should be performed

again. The number of time windows depends on the practical
application and whether the time series of each sub-window
are stationary or not.

The break points generated from BG algorithm can be uti-
lized for segmentation, but not qualified to serve as anomalies
which indicate the underlying performance change of the sys-

tem. To determine the actual anomaly of each parameter, slow
variables can be calculated according to

SV ¼
DS
Dt
¼ Sj � Si

tj � ti
ð2Þ

where SV is slow variable, Sj the observed date at time tj, Si the
observed date at time ti and DS the variation of the observed

data of each monitoring parameter within the corresponding
time interval Dt; j> i(i, j= 1, 2, . . ., N), N is the number of
time points. Theoretically, the smaller the time interval is,

the more details of slow variables can be revealed. However,
due to the noise impact, the fluctuations of slow variables will
increase with the narrowing of the time interval. For the pur-
pose of obtaining a relative variation (from one steady state to

another steady state transition) of slow variables as well as
avoiding the impact caused by noise, the time window should
be adjusted appropriately. And then, the slow variables within

the entire time window can be calculated by sliding time win-
dow Dt.

Taking monitoring parameter T24 for example, the break

points (calculated by Eq. (1)) are the 132th cycle (break point
1), the 215th cycle (break point 2) and the 271th cycle (break
point 3), shown in Fig. 3. The abscissa is time window, and
the ordinate denotes slow variable. For a simplified illustra-

tion, the time interval Dt equals 10 cycles, and 30 sub-windows
are evenly chosen from all the time windows. It is shown that
the slow variables prior to break point 2 obey a normal distri-

bution, and the slow variables posterior to break point 2 obey
another normal distribution with a mean value differing by
0.08 from that of the former one. Therefore, the anomaly of

T24 is break point 2 which corresponds to the 215th cycle.
Break point 1 and break point 3 are identified as fake anoma-
lies, because they are located in the steady fluctuations of the

slow variables.
For the purpose of obtaining a comprehensive indicator to

measure the hidden health state, the relationship between the
statistical properties of the observed data and the inherent

health state of the engine needs to be established by means
of information fusion26 for these multiple parameters. In that
Fig. 3 Non-stationary time series from T24.
case, the performance degradation can be ultimately tracked.
Information fusion is the process of integrating multiple data
into a consistent and useful representation. Once the anomaly

detection for each parameter is carried out, the average anom-
alies of multiple parameters can be taken as the final break
points to divide the time window. After the division is com-

pleted, the fusion can be executed according to the stationary
time series within each time window. The comprehensive indi-
cator is defined as health indicator (HI), assuming that HI

equals 1 when there is no degradation, and HI equals 0 when
the engine is in severe degradation. The theories of multiple
linear regression has been studied and developed maturely,
so given the statistical characteristics of the observed data,

the parameters are fused through multiple linear regression
model27,28 (a detailed explanation of applying linear method
to information fusion will be given in the case study) given by

y1t ¼ a01 þ XðtÞAT
1

y2t ¼ a02 þ XðtÞAT
2

..

.

ynt ¼ a0n þ XðtÞAT
n

8>>>>><
>>>>>:

ð3Þ

where y1t denote HI time series prior to the 1st anomaly; y2t
denote HI time series between the 1st anomaly and the 2nd

anomaly; ynt denote HI time series between the (n � 1)th anom-
aly and the nth anomaly, and n is the number of anomalies;
X(t) is the vector of multiple parameters [x1(t), x2 (t), . . .,
xl(t)], and l is the number of parameters; a01;A1 are the coeffi-
cients of the model corresponding to y1t , and
A1 ¼ a11; a

2
1; . . . ; al1

� �
; a02;A2 are the coefficients of the model

corresponding to y2t , and A2 ¼ a12; a
2
2; . . . ; al2

� �
; a0n;An are the

coefficients of the model corresponding to ynt , and
An ¼ a1n; a

2
n; . . . ; aln

� �
. All the coefficients can be obtained via

training sample set and sample data. For training21, we assume

HI equals 1 for the first five hours, 0 for the last five hours, and
kAn

for the five hours near the nth anomaly (kAn
¼ ð1�mAn

ÞIÞ,
and mAn

denotes the average change rate at the nth average

anomaly, I is unit matrix. Training sample set M is expressed by

M ¼

Xk1 k1

XkA1
kA1

XkA2
kA2

..

. ..
.

XkAn
kAn

Xk0 k0

2
66666666664

3
77777777775

ð4Þ

where Xk1 is the first five sets of observed data of the parame-
ters whose HI at the first five time points equals 1; XkAn

is the
five sets of observed data of the parameters whose HI at the

five time points near the nth anomaly equals 1�mAn
; and

Xk0 is the last five sets of observed data of the parameters
whose HI at the last five time points equals 0;
k1 = [1,1,1,1,1]T, kAn

¼ ð1�mAn
ÞI and k0 = [0,0,0,0,0]T.

With the implementation of sample training, the coefficients
a0n;An can be acquired, thereby enabling the calculation of HI.

As anomaly detection is carried out before the fusion, HI

time series are capable of characterizing the non-stationary pro-
cess ofmultiple parameters. This canbe testifiedbyanalyzing the
slow variables of HI. The slow variables obey one normal

distribution prior to the anomaly and another normal



Fig. 4 Schematic of Kalman filtering algorithm.
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distribution posterior to the anomaly (seen in the case study).
Such distribution of the slow variables is sufficient to manifest
the significant variation in the change rate of the performance

degradation, meaning that the degradation process is non-sta-
tionary with an anomaly. If the fusion is performed without
any anomaly information, the fused HI would be unable to

describe the non-stationary characteristics of the degradation
process, because the direct fusion does not take into account
the observed data near anomaly when constructing training

sample set.
In conclusion, the fused HI manages to not only demon-

strate the non-stationary characteristics of monitoring param-
eters, but also incorporate such characteristics of each

parameter by means of information fusion. In this way, the
realistic degradation curve can be drawn more accurately.

4. Prognostics

4.1. Prognostics model

The novel approach to RUL prognostics consists of two major
steps: obtaining the non-stationary performance degradation

curve of the engine and establishing prognostics model and
implement prediction. As the first step can be completed by
methods introduced above, this section focuses on the second

step. To that end, state-space method combined with Kalman
filtering algorithm29 is utilized for modeling and calculation.

State-space method is composed of state equation (Eq. (5))

and observation equation (Eq. (6)). In this paper, state equa-
tion presents the transition of its parameters from one moment
to the next, and observation equation connects the fused HI
with time sequence. The equations are shown as follows:

xt ¼ Fxt�1 þ wtI ð5Þ
yt ¼ Hxt þmt ð6Þ

where xt is the underlying state vector of the system at time
t; xt ¼ b0t ; b

1
t ; . . . ; bmt

� �T
, b0t ; b

1
t ; . . . ; bmt denote time varying

parameters of the prognostics model; yt is the HI at time t;

wt is measurement noise; mt is process noise; wt and mt are
independent from each other and assumed to be Gaussian
noise, wt � N(0,Q), mt � N(0,U), E[wtmt] = 0; H is
observation matrix and F is state transition matrix, where

H= [t0, t1, . . . , tm] and F= I(n+1)·(n+1).
According to Eqs. (5) and (6), the prognostics model is

given by

ŷt ¼ b0t þ b1t t . . .þ bmt t
m þ d ð7Þ

where ŷt is the predicted HI at time t; d is the error of the prog-

nostics model, calculated as the average error of the conver-
gence phase in the best fitting process by Kalman filtering.
To estimate the time varying parameters (the state vector of

state-space method) b0t ; b
1
t ; . . . ; bmt of the prognostics model,

Kalman filtering algorithm is employed for calculation.
Kalman filtering30,31 is a recursive algorithm consisting of two

phases: predicting (Eq. (8)) and updating (Eq. (9)). The first phase

is to estimate the state and the covariance of the current time step
based on the state and the covariance from the previous time step.
The second phase is to combine the current observations with the

state estimate for a refined state, and update the current state and
covariance with improved ones. The state estimate in the first
phase is termedas apriori state estimate,whereas aposteriori state

estimate in the second phase. Kalman filtering algorithm is
capable of predicting the time varying parameters of the prognos-
tics model, as well as achieving best fitting (to minimize the vari-
ance of the predicted value and the actual value) to reduce the

error d. The phases can be described as follows:

x̂t t�1j ¼ Fx̂t�1 t�1j

pt t�1j ¼ Fpt�1jt�1F
T þQI

(
ð8Þ

x̂t tj ¼ x̂tjt�1 þ KtdtI

pt tj ¼ pt t�1j � KtHpt t�1j

(
ð9Þ

where x̂tjt�1 is the a posteriori state estimate at time t given
observations up to and including at time t � 1,

E½xt � x̂tjt�1� ¼ 0; ptŒt�1 is the a posteriori error covariance,
ptjt�1 ¼ covðxt � x̂tjt�1Þ; Kt is KalmanGain, Kt = ptŒt�1H

T/St,
St = HptŒt�1H

T + U; dt is the error of prediction,

dt ¼ jyt � ŷtj; ŷt denotes prediction of yt.
In Kalman filtering algorithm, the initial state x̂0j0 and error

covariance p0j0 are derived by prior knowledge at the very begin-
ning. After the recursive calculation is triggered, the state and

the error covariance at time t can be inferred according to the
state along with the error covariance at time t � 1 and the obser-
vations up to time t � 1 (including at time t � 1). With the intro-

duction of the observations at time t, the a posteriori estimate of
the state and the covariance at time t can be obtained and then
updated. The whole process of Kalman filtering algorithm is

illustrated in Fig. 4. By this means, the recursive calculation is
carried out with appropriate convergence. Consequently, the
time varying parameters can be predicted and the error dt can
be identified via best fitting (presented in details in case study).

To sum up, the advantages of state-space method combined
with Kalman filtering algorithm can be presented as follows:
firstly, it is capable of creating an appropriate prognostics

model with time varying parameters; secondly, an accurate
prediction of the time varying parameters can be carried out;
lastly, the error can be reduced based on best fitting.

4.2. Steps

The implementation of RUL prognostics in this paper involves

a number of steps. To begin with, the time window of the non-
stationary degradation process of each parameter is divided
into several time windows, where the time series are stationary.

Then, according to the divided time windows, the degradation
processes are fused to model the performance degradation of
the system. After that, prognostics model is constructed by
applying state-space method along with Kalman filtering

algorithm. At the same time, the time varying parameters of
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the model can be predicted and updated by the algorithm. By
this means, the prognostics can be finally achieved.

To illustrate a step-by-step implementation of the

approach, a flowchart is given in Fig. 5.
More specifically, the steps are elaborated as follows:

Step 1. Detect the anomalies of all seven parameters usingEqs.
(1) and (2); then, take the average anomaly as the break
point to divide the time window of non-stationary time

series. In this step, the value of kAn (in training sample
set) is obtained along with the break point according to
Pavgn ¼
1

l

Xl

i¼1
Pin ð10Þ

mavgn ¼
1

l

Xl

i¼1
min ð11Þ

where Pavgn is the nth average anomaly for all param-
eters; mavgn is the average change rate at the nth aver-

age anomaly for all parameters; Pin is the nth
anomaly of parameter i; min is the proportion of
the decrease or increase of observed value for param-
eter i from no degradation to the nth anomaly to the

decrease or increase of observed value for parameter i
over the entire degrading process, i= 1, 2,. . ., l, l is
the number of multiple parameters, and n is the num-

ber of anomalies and min is given by
min ¼

1

5

X5
t¼1

Sit �
1

5

Xnþ2
t¼n�2

Sit

1

5

X5
t¼1

Sit �
1

5

XN
t¼N�4

Sit

¼

X5
t¼1

Sit �
Xnþ2
t¼n�2

Sit

X5
t¼1

Sit �
XN
t¼N�4

Sit

ð12Þ

where 1
5

P5
t¼1Sit is the mean of the observed data for

parameter i near the initial degradation; 1
5

Pnþ2
t¼n�2Sit is

the mean of the observed data for parameter i near

the nth anomaly, n is the number of anomalies;
1
5

PN
t¼N�4Sit is the mean of the observed data for

parameter i near the ultimate degradation, N is the

number of the time points; notice that 5 time points
are adopted in calculating the mean value of different
degradation phase (same number of time points are
applied in similar application21).
Step 2. Divide the non-stationary time series of each param-
eter into stationary ones based on the average anom-
aly (Eq. (10)) generated in Step 1; assign
Fig. 5 Flowchart o
kA1
; kA2

; . . . ; kAn into training sample set M (Eq.

(4)) for the training of the observed data to calculate
the coefficients a0

n;An of the linear regression model
(Eq. (3)) within different time windows.

Step 3. Assign the coefficients a0
n;An and observed data from

training set into Eq. (3) to obtain run-to-die (from
no degradation to severe degradation) HI time ser-
ies.By now, the fused HI time series are non-station-

ary. The break points (potential anomalies) can be
obtained by Eq. (1), and the final anomaly can be
identified by analyzing the slow variables. According

to the distribution of the slow variables, it can be tes-
tified that the anomaly of HI time series is consistent
with monitoring parameters.

Step 4. Take run-to-die HI as an input of state-space method
(Eqs. (5) and (6)) and Kalman filtering algorithm
(Eqs. (8) and (9)) to fulfill best fitting, thus minimiz-
ing the error dt. Most importantly, the prognostics

model is constructed in this step.
Step 5. Assign the coefficients a0

n;An and observed data from
test set into Eq. (3) to obtain running (the degrada-

tion state is unknown) HI time series.
Step 6. Take running HI as an input of state-space method

(Eqs. (5) and (6)) and Kalman filtering algorithm

(Eqs. (8) and (9)) to estimate the time varying param-
eters of the prognostics model.According to the results
of Step 4 and Step 6 the prognostics model Eq. (7) can

be ultimately constructed with identified parameters.
With the observations introduced, this approach is
capable of achieving an accurate prognosis of RUL.

5. Case study

(1) Data sources

The required data of this case study comes from a NASA
turbofan engine degradation simulation for 100 engines in

Ref.32, produced by commercial modular aero-propulsion sys-
tem simulation (C-MAPSS) damage propagation model. The
data set consists of three subsets including training set, test

set, and RUL set. Both training set and test set include 24
monitoring parameters of all the simulated engines. The differ-
ence of these two sets is that training set refers to run-to-die

data for each engine which is recorded from no degradation
to failure, whereas test set refers to running data recorded from
unknown state to another unknown state. RUL set provides
f the prognostics.
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the corresponding realistic remaining useful life of each engine
under test set, and of course a standard to measure the accu-
racy of our approach.

In our prognostics, engine No. 2 is chosen as the prediction
object. The initial values of the inputs are obtained by means
of statistical and fitting methods, p0Œ0 = [0.001,0.001,0.001]

and x̂0j0 ¼ ½0:9039; 0:0020;�0:0000�T.
(2) Implementation
Step 1. According to Eqs. (1) and (2), anomaly detection can

be carried out with results listed in Table 1. To meet the require-
ments of practical application and the restriction that the time
series of each time window must be stationary, Eq. (1) is utilized
to generate four time windows, and Eq. (2) is used to identify the

fake anomalies among the obtained break points.
Table 1 gives the Pi1 and mi1 of each parameter. Parameter

P15 is not included in this Table, because the monitoring data

remain almost the same during the observation. According to
Table 1, the average anomaly Pavg1 , which will be taken as the
break point to divide the time window, is located at the 217th

cycle (Eq. (10)), and the corresponding mavg1 equals 0.507,
meaning kA1

= [0.493,0.493,0.493,0.493,0.493]T.
Step 2. Once the break point (anomaly) and k are obtained,

training sample set can be constructed (Eq. (4)) as below

M ¼
Xk1 k1

XkA1
kA1

Xk0 k0

2
64

3
75

where kA1
¼½0:493;0:493;0:493;0:493;0:493�T; k1¼½1;1;1;1;1�T;

k0¼½0;0;0;0;0�T,
Xk1 ¼

641:89 1583:84 1391:28 21:60 554:53 2388:01 90

641:82 1587:05 1393:13 21:61 554:77 2387:98 90

641:55 1588:32 1398:96 21:60 555:14 2388:04 90

641:68 1584:15 1396:08 21:61 554:25 2387:98 90

641:73 1579:03 1402:52 21:60 555:12 2388:03 90

2
6666664

XkA1
¼

642:97 1591:44 1411:63 21:61 553:75 2388:09 90

642:46 1583:46 1408:68 21:61 553:01 2388:08 90

643:30 1585:11 1407:97 21:61 553:22 2388:10 90

642:91 1592:69 1412:70 21:61 553:09 2388:12 90

642:88 1592:52 1412:91 21:61 553:28 2388:02 90

2
6666664

Xk0 ¼

643:78 1602:03 1429:67 21:61 551:46 2388:16 90

643:91 1601:35 1430:04 21:61 551:96 2388:22 90

643:67 1596:84 1431:17 21:61 550:85 2388:20 90

643:44 1603:63 1429:57 21:61 551:61 2388:18 91

643:85 1608:50 1430:84 21:61 551:66 2388:20 91

2
6666664

Table 1 Anomaly Pi1 and change ratio mi1 of the observed
The coefficients within different time windows are pre-
sented as follows:

a01;a
1
1; . . . ;a

7
1

� �
¼ð335:848;�0:117;�0:003;�0:013;0:784;0:128;�0:148;0:003Þ

a02;a
1
2; . . . ;a

7
2

� �
¼ð0;�0:035;0:001;�0:020;38:560;0:037;�0:339;0:001Þ

To testify the applicability of multiple linear regression model

for the fusion of observed information, the statistics27 pro-
duced during the whole process are carried out and listed in
Table 2.

In Table 2, it is shown that two phases are utilized for mul-
tiple linear regression in order to implement information
fusion. The statistics which serve as criteria to judge whether

the regression model fit the circumstance include four parts:
the R2 statistic, the F statistic, an estimate of the error variance
and �r (the average residual error). R2 is one minus the ratio of

the error sum of squares to the total sum of squares, and the
closer this value is to 1, the more appropriately the model fits
the data. F is the test statistic generated in the regression, for a
significant linear regression relationship between the response

variable and the predictor variables. The bigger F value is,
the more significant the model is. The critical value of F statis-
tic in this case is between 9.33 and 9.37 according to F distri-

bution critical value table. Additionally, the estimated
verror(error variance) and �r are small enough to be accepted
in the fusion process. It is obvious that all the statistics of both

phases are well qualified to testify that the multiple linear
regression model fits for the observed data and the information
fusion can be implemented reasonably.
54:72

51:31

54:24

58:01

58:15

3
7777775

71:14

63:95

61:10

70:12

74:41

3
7777775

84:13

89:87

98:67

02:01

09:36

3
7777775

parameters.

c

f



Table 2 Statistics produced in the multiple linear regression.

Phase R2 F verror �r

1st phase 0.9820 15.5594 0.0058 0.0284

2nd phase 0.9852 33.2688 0.0030 0.0239

Remaining useful life prognostics for aeroengine based on superstatistics and information fusion 1093
Step 3. Assign the coefficients within different time win-

dows into Eq. (3), and then the information fusion for run-
to-die HI time series can be implemented with the introduction
of the observations from training set. The fused run-to-die HI

time series are shown in Fig. 6.
The slow variables of the HI are presented in Fig. 7. It’s

shown that the distributions of HI’s slow variables prior to

and posterior to the 21st time window differ with each other
by a difference of 0.05 in mean values. Obviously, the change
rate of the degradation has changed abruptly in this time
window. What should be noted is that the 21st time window

happens to be near to the 217th cycle (average anomaly),
which means that the fused HI time series based on
superstatistics manage to reflect the engine’s non-stationary

performance degradation precisely.
Step 4. The result of best fitting via state-space method

combined with Kalman filtering algorithm is presented in

Fig. 8 (green for predicted HI, and red for fused HI).
Based on the best fitting for observations, the prognostics

model can be constructed as
ŷt ¼ b0t þ b1t tþ b2t t
2 þ d
where d = ± 0.138. Note that d is average error calculated
according to dt generated in the fitting process.
Fig. 6 HI time series under training set.

Fig. 7 Slow variables of HI.
Step 5. Replace the observations from training set with

observations from test set in Step 3, and then the information
fusion for running HI time series can be carried out. The fused
running HI time series are presented in Fig. 9.

Step 6. By assigning the obtained HI in Step 5 into Kalman
filtering algorithm and state-space method, the time varying
parameters of the prognostics model can be estimated. Ulti-

mately, the prognosis of RUL can be accomplished with the
introduction of time. The prediction results are shown in
Fig. 10. It’s presented that the failure of engine No.2 under test
set is estimated to occur after 90 cycles. Compared to the real-

istic RUL of 98 cycles, the proposed approach is followed by a
prediction error of 8.163%.
Fig. 8 Best fitting for HI time series under training set.

Fig. 9 HI time series under test set.

Fig. 10 RUL prognostics.
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In order to verify the accuracy of the approach proposed in
this paper which is based on superstatistics and information
fusion (noted by SIF_Kalman in the following description),

a comparison of it to the other two traditional methodologies
is made in the following discussion. The traditional methodol-
ogies are least squares33 based on information fusion (noted by

least squares) and Kalman filtering algorithm based on infor-
mation fusion (noted by IF_Kalman). Least Squares is a
method to minimize the sum of squared residuals, a residual

being the difference between the fitted value to a correspond-
ing observed value. The following discussion is mainly pre-
sented in terms of fitting, prediction error and prediction
evolution process.

(1) Fitting and prediction error
The prediction results by least squares and IF_Kalman are

illustrated in Fig. 11(a) and (b), separately. Comparing Fig. 10

with Fig. 11(a) and (b) and according to Table 3, Least squares
generates the best fitting but worst prediction error , meaning an
over fitting phenomenon occurs in the procedure. Under the cir-

cumstances of over fitting, Least squares method generally leads
to poor predictive performance because of its exaggeration in
minor fluctuations of the data, thereby not available for predic-

tion in engineering. For the rest two methods, SIF_Kalman
shows a prediction error of 8.16% and a fitting error of
9.32%, both smaller than that of IF_Kalman. Therefore,
SIF_Kalman is more appropriate for the prognosis of RUL.
Fig. 11 RUL prognostics achieved by least squares and

IF_Kalman.

Table 3 Predicted RUL of each method.

Method Actual RUL (cycle) Predicted RUL

Least squares 98 122

IF_Kalman 98 83

SIF_Kalman 98 90
(2) Prediction evolution process
Practically, with the introduction of monitoring parame-

ters, the prediction results of all the three methods would

gradually approach the actual RUL, which explains the con-
cept of prediction evolution. For example, assuming that the
entire service life of an engine is 1000 cycles, the RUL pre-

dicted at the 750th cycle (0.75 standard life) is far more accu-
rate than the RUL predicted at the 500th (0.5 standard
life)cycle. However, the prediction evolution process of each

method differs, which is shown in Fig. 12.
Standard life in Fig. 12 is calculated according to

LS ¼ LO=LE ð13Þ

where LS denotes standard life, LO the operation life when

RUL prognostics is implemented and LE the entire useful life.
The standard life of 0.75 corresponds to the 21st time win-

dow of HI’s slow variables (see in Fig. 7), indicating that
anomalous behavior occurs in the degradation. Before the

anomaly, the prediction evolution processes of all the methods
can be analyzed as follows. For least squares, the prediction
error is unacceptable and the approaching speed is far too

slow; what’s worse, the centerline of the fluctuations (blue dot-
ted line between 0.5 and 0.75) deviates far away from the
actual useful life line (red solid line). For IF_Kalman and

SIF_Kalman, their prediction curves fluctuate around the
actual useful life line, but the fluctuations of the former are
more volatile than the latter. Hence, the prediction perfor-
mance of SIF_Kalman is the best prior to anomaly. For the

situations after anomaly, the conclusion is almost the same.
For least squares, the prediction curve approaches the red line
more rapidly; however, the prediction error has not been

improved due to the poor prediction performance at the earlier
stage. For IF_Kalman, the fluctuations become less volatile;
while, the approaching process is not so ideal because the deg-

radation trend is hard to track when the non-stationary char-
acteristics of the degradation are not taken into account, so the
prediction is not so accurate. For SIF_Kalman, the approach-

ing is the most rapid, the fluctuations are the most acceptable,
and the prediction is the most accurate, all because of the two
(cycle) Fitting error (%) Prediction error (%)

6.33 24.49

9.85 15.31

9.32 8.16

Fig. 12 Comparison of prediction evolution processes of three

methods.
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reasons. Firstly and most importantly, the realistic non-sta-
tionary degradation can be revealed by HI which is obtained
by means of superstatistics and information fusion; secondly,

the time varying parameters of the prognostics model can be
estimated precisely. Therefore, SIF_Kalman is also superior
to traditional methods posterior to anomaly.

In conclusion, SIF_Kalman fits for the prognosis of RUL
because of small fitting and prediction error and satisfactory
prediction evolution process. Importantly, all such good pre-

diction performance should owe to the application of supersta-
tistics, information fusion and appropriate algorithm.
6. Conclusions

In this paper, a novel approach to RUL prognostics of aeroen-
gine subject to non-stationary degradation is developed, and

the calculation is realized by using state-space method and
Kalman filtering algorithm. The main accomplishments of
the approach are as follows:

(1) The non-stationary characteristics of monitoring param-
eters are taken into account, which contributes to the
accurate demonstration of the realistic degradation of

the engine.
(2) Limitations caused by single parameter-based methodol-

ogies are avoided, because multivariate observed infor-

mation is made full use of.
(3) As the observed information is contaminated when col-

lected, monitoring parameters are incapable of charac-
terizing the actual health state of the system directly.

However, Kalman filtering algorithm takes noise factor
into consideration, thereby enabling higher accuracy
and more satisfactory prediction evolution process.

Additionally, the algorithm simply requires observed
data instead of enormous unavailable failure data, mak-
ing the implementation available.

The case study shows that an accurate prognosis of RUL
can be achieved, which provides a guide for operators to real-

ize CBM, thereby assisting in guaranteeing civil aviation safety
and minimizing operation cost. For further study, the applica-
tion of superstatistics theory will be developed, e.g. the degra-
dation amount distribution of performance parameters of

aeroengine can be applied to RUL prognostics by combining
stochastic process with super statistics.
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