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Most of the existing fault detection methods rarely consider the cost-optimal maintenance policy. A novel multivariate Bayesian
control approach is proposed, which enables the implementation of early fault detection for a helicopter gearbox with cost
minimization maintenance policy under varying load. A continuous time hidden semi-Markov model (HSMM) is employed
to describe the stochastic relationship between the unobservable states and observable observations of the gear system. Explicit
expressions for the remaining useful life prediction are derived using HSMM. Considering the maintenance cost in fault detection,
themultivariate Bayesian control scheme based onHSMM is developed; the objective is tominimize the long-run expected average
cost per unit time. An effective computational algorithm in the semi-Markov decision process (SMDP) framework is designed to
obtain the optimal control limit. A comparisonwith themultivariate Bayesian control chart based onhiddenMarkovmodel (HMM)
and the traditional age-based replacement policy is given, which illustrates the effectiveness of the proposed approach.

1. Introduction

In a helicopter system, the mechanical drive system is the
most efficient and compact device to transmit torque and
change angular velocity. As the key mechanical transmission
parts, gears are extensively used in aerospace, shipbuilding
industry, and wind power industry, such as helicopters, cruis-
ers, and wind turbines. Gear failure will cause machine halts
in the whole mechanical system, resulting in great economic
losses and even human casualties.

Condition monitoring and fault detection technique can
significantly improve the reliability of the gear transmission
system and reduce the occurrence of failure. In condition-
based maintenance (CBM) and prognostics and health man-
agement (PHM), the vibration monitoring data obtained
from the accelerometers carry a large amount of information,
whichwere used in the fault detection of the gears for decades
and were very helpful to prevent unnecessary machine halts
[1, 2].The accurate early fault detection can effectively prevent
the occurrence of secondary damage. Appropriate preventive
maintenance can significantly improve equipment availability
and save cost for gearbox users. Therefore, the early gear

fault detection and maintenance scheme optimization have
become research hotspots in recent years.

In recent research, advanced nonparametric methods
were widely applied to gearbox early fault detection, such as
the continuous wavelet transform (CWT) [3], the multiscale
chirplet path pursuit (MSCPP) [4], and multiresolution
Fourier transform [5]. Some researchers applied parametric
time series model to gearbox fault detection, most of whom
assumed that gearbox ran under constant load conditions.
For example, Wang and Wong [6] indicated that the autore-
gressive (AR) model with a high diagnostic confidence level
can detect the gear crack much earlier than the conventional
method. Rofe [7] used the autoregressive moving-average
(ARMA) model under the condition of load fluctuation for
gear fault diagnosis and selected the variance and kurtosis
of the residuals of ARMA model as the indicators of failure.
It should be noted that the fault diagnosis methods in the
literature mostly assume the gears run under constant speed
or constant load conditions, meaning that all the signal
responses are due to component degradation or failures.This
is not always consistent with the reality that gears often run
under varying load, such as the wind turbine gearboxes and
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the helicopter planetary gearboxes [8, 9]. Under the assump-
tion of constant load, it is difficult to separate the interference
signals caused by load changes, which greatly affects the
characteristics of the signals. In most cases, the change of the
load variation in the feature level is similar to that caused by
fault. This increases the difficulty of feature extraction and
thereby also increases the difficulty of effective monitoring,
diagnosis, and prediction. The gear motion residual (GMR)
signal is an effective algorithm and highly insensitive to the
varying load [10]. The healthy portion of the GMR signals is
used to fit the VARmodel and the residuals of the whole data
sets are calculated to process the early fault detection scheme
in this paper.

The operational states (healthy or unhealthy) cannot be
observed directly when the gear system is running. Several
approaches have been used tomodel the degradation process,
such as proportional hazards model (PH) [11], stochastic
filtering model (SFM) [12], and hidden Markov model
(HMM) [13]. In recent years, HMM has been widely applied
to speech recognition [14], system fault diagnosis [13, 15], and
life prediction [16]. However, in HMM, the sojourn time in
each operational state of the system is assumed to follow
exponential distribution, that is, the “memoryless” property.
As an extension of the HMM, the sojourn time in each oper-
ational state is not restricted by exponential distribution in
a hidden semi-Markov model (HSMM), and its degradation
process is much closer to the real degradation situations. Liu
et al. [17, 18] proposed a diagnosis and prediction method
of equipment based on the HSMM and the sojourn time
follows normal distribution. Jiang et al. [19] carried out a
small extension to HMM, considering a HSMM with the
sojourn time obeys Erlang (2, 𝜆) distribution. A general
Erlang HSMM is considered in this paper to model the
deterioration process of the gear system. The expectation-
maximization (EM) algorithm is employed to estimate the
unknown state and observation parameters of the model.
After the model parameters are estimated, the posterior
probability that the system is in each state is used to derive
the expressions for the reliability distribution function of
remaining useful life (RUL), the probability density function
(PDF), and the mean residual life (MRL) function.

When using the HSMM tomodel the deterioration of the
gear system with the consideration of maintenance policy, it
is necessary to consider the best stopping time. The Bayesian
methods are used extensively to determine the stopping time.
Girshick and Rubin [20] introduced the Bayesian method
for the production process control for the first time in 1952,
showing that repair was needed when the posterior probabil-
ity was beyond the control limit. Considering the minimum
maintenance cost, Kim et al. [13] put forward the optimal
Bayesian forecasting model using the actual oil spectral
analysis data. Most of the stochastic models assumed that
the system degradation process was modeled by a contin-
uous time HMM and each sojourn time of hidden states
was exponentially distributed, which is not always realistic.
Relaxing the assumption ofMarkovian process deterioration,
Panagiotidou and Tagaras [21] proposed a model that inte-
grated process control and maintenance for two operational
states. However, this method is only applicable to univariate

monitoring. Such a drawback of the existing optimization
model motivates us to set up an optimal maintenance model
under real circumstances. In order to find the optimal stop-
ping time, based on the HSMM, a Bayesian control scheme
is established with the objective of minimizing the long-run
expected average cost per unit time to determine the optimal
stopping time and when to perform the preventive mainte-
nance actions.

To the best of our knowledge, this is the first paper apply-
ing HSMM with general Erlang distribution of sojourn time
in two hidden states and optimal Bayesian control scheme to
find the cost-effective strategy for early fault detection of the
helicopter gearbox. With the condition monitoring informa-
tion, the proposed approach can not only update the remain-
ing useful life at each sampling epoch, but also process early
fault detection of the helicopter gear system and determine
the optimal stopping time with minimum cost simultane-
ously.

The remainder of the paper is organized as follows. In
Section 2, the healthy part of GMR signal of the helicopter
gearbox life test vibration data is used to fit a VARmodel, and
the residuals of the whole data sets are obtained. In Section 3,
the HSMM is applied, in which each operational state obeys
the general Erlang distribution, to describe the degradation
process of the gear system, and the EM algorithm is employed
to estimate the unknown state and observation parameters of
the model. The conditional reliability distribution functions
of theRUL and theMRL function are derived. In Section 4, on
the basis of hidden semi-Markov degradation modeling, an
optimal Bayesian control chart is developed, and the optimal
control limit is solved in the semi-Markov decision process
framework, followed by a comparison with other methods.
The conclusions are presented in Section 5.

2. Residuals Computation for
a Helicopter Gearbox

2.1. Experimental Scheme. The overall process of the optimal
Bayesian control scheme for the helicopter gearbox early fault
detection is illustrated schematically in Figure 1. Firstly, we
need to obtain the residuals of the multivariate condition
monitoring data. The test data were obtained from the
Mechanical Diagnostic Test Bed (MDTB) in Pennsylvania
State University, as shown in Figure 2.

Gearbox used in this test includes a pinion gear with 21
teeth and a drive gear with 70 teeth. The gearbox was driven
by induction motors (22.38 kW, 1750 rpm) and the torques
were provided by alternating current absorption motors
(55.95 kW, 1750 rpm). The power of the gearbox is 3.73∼
14.92 kW and the speed ratio range is 1.2 : 1∼6. #2 and #3
accelerometers were installed on the gearbox body, respec-
tively, in the axial and horizontal directions, as shown in
Figure 3.

Samples were taken every 8 minutes (0.1333 h) and stored
in a new file with a sampling frequency of 20 kHz. Each sam-
pling time is 10 s.The 16-bit resolutionAD converter was used
to ensure the accelerometers have sufficient precision. Driv-
ing motor speed V01 and gearbox output torque V05 were
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Figure 1: The flow chart of Bayesian control scheme.

Figure 2: Mechanical diagnostic test bed.

also collected with sampling frequency of 1 kHz and sampling
time of 10 s. The test is divided into two stages: at a certain
rotating speed, gearbox firstly was run at 100% rated output
torque for 96 hours (555 in-lbs); it was then run under varying
load until failure. In the second stage, the output torque was
periodically increased from 50% to 300% rated torque (50%,
100%, 150%, 200%, 250%, and 300%) and then dropped from
300% to 50% rated torque (300%, 250%, 200%, 150%, 100%,
and 50%) gradually. The output torque of the gearbox is
shown in Figure 4. Figure 5 shows themean value of the input
shaft speed.The input shaft speed fluctuation error in Figure 5
is within 0.06%; therefore the speed can be considered as a
constant.

The gearbox was run normally in the first stage for 96
hours; thus only the vibration data collected in the second
stage (varying load) were analyzed. Sampling points collected
by #2 and #3 sensors were, respectively, saved in files A02 and
A03, and each of them contained 145 data files under varying

load. The original vibration data is shown in Figure 6. The
results of shutdown fault inspection were shown in Figure 7
that the pinion gear was normal while five fully broken and
two partially broken teeth were found in the drive gear.

2.2. Gear Motion Residual (GMR) Signal. TSA algorithm,
which extracts the meshing frequency components from the
gear vibration data and then synchronously adds and averages
them with the rotation of the gear shaft, is widely used in
fault diagnosis of gears. The number of sampling points in a
single rotational period can be calculated using the following
formula: 𝐾 = ⌈ 𝑓𝑠(𝑓𝑚/𝑁𝑔)⌉ , (1)

where 𝑓𝑠 is sampling frequency, 𝑓𝑚 is the fundamental
meshing frequency of the gear, 𝑁𝑔 is the number of teeth of
the gear, and ⌈⋅⌉ is the ceil function.

Suppose that 𝑉(𝑘), 𝑘 = 1, 2, . . . , 𝑛 data points were
contained in each sampling data file, the rotation period
number𝑀 of the gear is given by𝑀 = ⌊ 𝑛𝐾⌋ , (2)

where ⌊⋅⌋ represents the floor function.
In a complete revolution of the gear of interest, the TSA

signal is given by

𝑉𝑛 (𝑘) = 1𝑀𝑀−1∑
𝑖=0

𝑉 (𝑘 + 𝑖𝐾) , 𝑘 = 1, 2, . . . , 𝐾. (3)

The TSA signal of the helicopter gearbox is shown in
Figure 8.

It is efficacious to use the TSA method to reduce the
influence of the background noise and the nongear vibration
source. GMR signal, which can be obtained by removing
the gear meshing frequency and its harmonic from the TSA
signals, is highly insensitive to the varying load conditions
[10]. The GMR signal can be expressed as follows:𝑅𝑛 = 𝑉𝑛 − 𝐸𝑛, (4)

where 𝐸𝑛 is the signal composed of the eliminated compo-
nents.

The GMR signal of the gear of interest is shown in
Figure 9. It can be seen from the comparison betweenFigure 9
and the TSA signal that the GMR signal effectively removes
the noise, representing more obvious signal change features.
Further, we consider a VAR model for the healthy part of the
GMR signal to obtain the residual.

2.3. GMR Residuals Computation Using VAR Model. In this
section, the healthy portion of the GMR signal is used to
fit a VAR model. Two-dimensional data can be expressed as{𝑍𝑖

1, 𝑍𝑖
2, . . . , 𝑍𝑖

𝑡𝑖
}, 𝑖 = 1, 2. Assume that the healthy portion of

the data obeys a stationary VAR process:

𝑍𝑛 = 𝜇 + 𝑝∑
𝑟=1

Φ𝑟 (𝑍𝑛−𝑟 − 𝜇) + 𝜀𝑛, 𝑛 ∈ 𝑍, (5)
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(a) Side view (b) Front view

Figure 3: Locations of #2 and #3 accelerometers.
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Figure 4: Output torque of the gearbox.
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Figure 5: Input speed of the driving motor.

where 𝜇 ∈ R2 is the mean value; 𝑝 ∈ N is the model order;Φ𝑟 ∈ R2×2 is the autocorrelationmatrices; 𝜀𝑛 are independent
identically distributed (i.i.d) and obey 𝑁2(0, Σ); Σ ∈ R2×2 is
the covariance. Let 𝛿 = 𝜇 −∑𝑝

𝑟=1Φ𝑟𝜇, so (5) can be expressed
with the following form:𝑊 = Φ𝐴 + 𝐵, (6)
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Figure 6: Original data of gearbox under varying load.

where𝑊 = (𝑍2
𝑡2
, 𝑍2

𝑡2−1
, . . . , 𝑍2

𝑝+2, 𝑍2
𝑝+1, 𝑍1

𝑡1
, 𝑍1

𝑡1−1
, . . . , 𝑍1

𝑝+2,𝑍1
𝑝+1)󸀠 ,𝐴 = (𝛿,Φ1, Φ2, . . . , Φ𝑝)󸀠 ,𝐵 = (𝜀2𝑡2 , 𝜀2𝑡2−1, . . . , 𝜀2𝑝+2, 𝜀2𝑝+1, 𝜀1𝑡1 , 𝜀1𝑡1−1, . . . , 𝜀1𝑝+2, 𝜀1𝑝+1)󸀠 ,

Φ = ((((
(

1 1 1 1𝑍2
𝑡2−1

𝑍2
𝑝 𝑍1
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𝑍1
𝑝𝑍2
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𝑝−1... ... ... ...𝑍2

𝑡2−𝑝
𝑍2
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𝑍1
1

))))
)

󸀠

.
(7)

Reinsel [22] indicated that𝐴 and Σ can be obtained using
least squares estimates, and the AIC criterion is selected in
this paper to determine themodel order𝑝.Thus the estimated
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(a) Broken drive gear (b) Five fully broken and two partially broken teeth

Figure 7: Test results of the drive gear.
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Figure 8: TSA signal of the original data.
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Figure 9: GMR signal of the original data.

VAR model parameters 𝛾̂ = (𝑝̂, 𝛿̂, Φ̂1, Φ̂2, . . . , Φ̂𝑝) can be
utilized to calculate the residual 𝑌𝑛 of the TSA signals:𝑌𝑛 = 𝑍𝑛 − 𝐸𝛾̂ (𝑍𝑛 | 󳨀⇀𝑍𝑛−1) , (8)

where
󳨀⇀𝑍𝑛−1 = (𝑍1, 𝑍2, . . . , 𝑍𝑛−1).
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Figure 10: Residuals for data files 1–145.

For 𝑛 > 𝑝̂,
𝑌𝑛 = 𝑍𝑛 − (𝛿̂ + 𝑝̂∑

𝑟=1

Φ̂𝑟𝑍𝑛−𝑟) . (9)

For 𝑛 ≤ 𝑝̂, the residual 𝑌𝑛 can be computed recursively
by Kalman filter, for which the details can be found in the
Appendix.

Using the above method, we obtain the GMR residual
signal of the gear, which is shown in Figure 10. To compress
the huge amount of data, we select the standard deviation,
which is commonly used characteristic parameter in the
vibration signal processing, to process the residual of the gear,
as shown in Figure 11.

Figure 11 illustrates that the residual standard deviation
values of A02 and A03 are relatively stable from files 1 to 100;
therefore, we assume the system is in the healthy state in this
portion, while from files 101 to 145 the system operates in
the unhealthy state as the standard deviation values of this
part show an obvious increase compared with those of the
healthy portion. Normality and independence tests are taken
for these two parts of data, the results of which are shown in
Table 1.

From Table 1, both the standard deviation values for
A02 and A03 passed the normality and independence tests,
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Figure 11: Standard deviation indicator of residuals.

Table 1: 𝑝 value of the normality and independence tests.

RMS of residuals Healthy portion
(files 1–100)

Unhealthy portion
(files 101–145)

Normality 0.1641 0.4032
Independence 0.3321 0.1861

indicating that standard deviation values of the residual are
independent and obey the multivariate normal distribution,
which is consistent with the assumption that the observation
of the HSMM described in Section 3 obeys multivariate
normal distribution.

3. Residual Life Prediction Based on
Hidden Semi-Markov Model

3.1. Hidden Semi-Markov Model. It has been demonstrated
from in [13, 19, 23] that a 3-state Markov model is adequate
to model the deterioration process of the system. We assume
that the degradation process of the system is described by
a 3-state HSMM, the state space of which is 𝑆 = {0, 1, 2}.
States 0 and 1 are unobservable and represent the good and
warning system states, respectively. Only state 2 is assumed
to be observable and represents the failure state. Suppose the
system starts in the healthy state, that is, 𝑃(𝑋0 = 0) = 1.
While the sampling interval is fixed, the observation of the
system 𝑌 = (𝑌𝑘 : 𝑘 ∈ N) is independent given the state of the
gear system. 𝑦Δ, 𝑦2Δ, . . . , 𝑦𝑘Δ ∈ R𝑑 is used to denote the 𝑑-
dimension observation vector at each sampling epoch; thus𝑦𝑘Δ given the state 𝑥 obeys 𝑑-dimension multivariate normal
distribution with 𝑁𝑑(𝜇𝑥, Σ𝑥), 𝑥 = 0, 1, and the probability
density function is given by

𝑓𝑦𝑘Δ|𝑋𝑛Δ (𝑦𝑘Δ | 𝑥) = 1√(2𝜋)𝑑 det (Σ𝑥)⋅ exp(−12 (𝑦𝑘Δ − 𝜇𝑥)󸀠 Σ−1
𝑥 (𝑦𝑘Δ − 𝜇𝑥)) , (10)

0 1 2

P11 P22P00

P02

P01 P12

Figure 12: Schematic for system state transition of the 3-state
HSMM.

where 𝜇0, 𝜇1 ∈ R2, Σ0, Σ1 ∈ R2×2 are unknown observation
parameters.

The state transition of the gear system is illustrated in
Figure 12.The transition probability matrix is 𝑃 = [𝑃𝑖𝑗] (𝑖, 𝑗 ∈𝑆), where𝑃𝑖𝑗 represents the probability that the system transits
to state 𝑗 after it leaves from state 𝑖.

Generally, the transition probability matrix of the system
is assumed as follows:

𝑃 = (𝑝00 𝑝01 𝑝02𝑝10 𝑝11 𝑝12𝑝20 𝑝21 𝑝22) = (0 𝑝01 𝑝020 0 10 0 1 ) (11)

Eq. (11) indicates that the system starts in the healthy state,
where 𝑝01 + 𝑝02 = 1.

Suppose that in state 𝑖 for 𝑖 = 0, 1, the sojourn time obeys
the general Erlang distribution, and the probability density
function is given by

𝑓𝑖 (𝑡) = 𝜆𝑘𝑖𝑡𝑘𝑖−1𝑒−𝜆𝑡(𝑘𝑖 − 1)! for 𝑡 ≥ 0, (12)

where 𝑘𝑖 ∈ N+ is the unknown shape parameter and 𝜆 > 0
is unknown rate parameter. Erlang distribution can also be
modeled as a series of a given number of exponential phases
running one after another until the end of the sojourn time.
In order to record the phases in theMarkovmodel, we need to
enlarge the state space. Let Θ = {𝐾1, 𝐾2, 𝐾3} be the new state
space, where 𝐾1 = {1, . . . , 𝑘1} represents the set of healthy
states,𝐾2 = {𝑘1+1, . . . , 𝑘1+𝑘2} represents the set of unhealthy
states, and𝐾3 = {𝑘1 + 𝑘2 + 1} represents the failure state.

The system’s failure time is denoted by 𝜉 = inf{𝑡 ≥0 : 𝑋𝑡 = 2}. Let 𝑂 denote the data histories and Λ =(𝑝01, 𝑝02, 𝑘1, 𝑘2, 𝜆) and Ψ = (𝜇0, 𝜇1, Σ0, Σ1) denote the sets
of state and observation parameters to be estimated, respec-
tively. Since the sample path (𝑋𝑡 : 𝑡 ≥ 0) of the state process
in HSMM is unobservable, it is difficult to determine the
analytical expression of the maximum likelihood function.
The expectation-maximization (EM) algorithm can solve it
by iteratively maximizing the pseudo likelihood function. LetΛ 0 = (𝑝̂01, 𝑝̂02, 𝑘̂1, 𝑘̂2, 𝜆̂) and Ψ0 = (𝜇̂0, 𝜇̂1, Σ̂0, Σ̂1) be the
initial values; the EM algorithm is shown in Figure 13.

Updated parameters Λ∗, Ψ∗ in each step are then used as
new initial values to the E-step, leading the iteration in E-
step andM-step until the Euclidean norm satisfies |(Λ∗, Ψ∗)−(Λ̂, Ψ̂)| < 𝜀, for small given 𝜀 > 0. Detailed expressions
of likelihood function and pseudo likelihood function can
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be found in Khaleghei and Makis [23]. The state parameters𝑝01, 𝑝02 can be updated by calculating the unique stationary
point from𝜕𝑄 (Λ,Ψ | Λ̂, Ψ̂)𝜕𝑝01 = 𝜕𝑄 (Λ,Ψ | Λ̂, Ψ̂)𝜕𝑝02 = 0. (13)

The explicit expressions of updated 𝑝∗
01 in each step are

given by

𝑝∗
01 = ∑𝑁

𝑖=1 𝛼̂1𝑖 + ∑𝑀
𝑗=1 𝛽̂1𝑗∑𝑁

𝑖=1 (𝛼̂1 + 𝜔̂)𝑖 + ∑𝑀
𝑗=1 𝛽̂1𝑗 . (14)

The updated 𝑘∗1 , 𝑘∗2 , 𝜆∗ in each step can be obtained by

max
𝑘1 ,𝑘2 ,𝜆

( 𝑁∑
𝑖=1

(𝛼̂1 + 𝜔̂)𝑖 + 𝑀∑
𝑗=1

(𝛽̂1 + 𝛾̂1)𝑗)𝑘1 ln 𝜆
+ 𝑁∑

𝑖=1

𝛼̂1𝑖𝑘2 ln 𝜆 + 𝑁∑
𝑖=1

𝛼̂3𝑖 (𝑘2 − 1) + 𝑀∑
𝑗=1

⟨𝑎4, 𝑔̂⟩𝑗𝑓̂𝑗

+ ( 𝑁∑
𝑖=1

(𝛼̂2 + 𝜔̂ ln 𝑡)𝑖 + 𝑀∑
𝑗=1

(𝛽̂3 + 𝛾̂3)𝑗)(𝑘1 − 1)
− ( 𝑁∑

𝑖=1

𝛼̂1𝑖 + 𝑀∑
𝑗=1

𝛽̂1𝑗) ln (𝑘2 − 1)!

− ( 𝑁∑
𝑖=1

(𝛼̂1 + 𝜔̂)𝑖 + 𝑀∑
𝑗=1

(𝛽̂1 + 𝛾̂1)𝑗) ln (𝑘1 − 1)!
− ( 𝑁∑

𝑖=1

𝑡 (𝛼̂1 + 𝜔̂)𝑖 + 𝑀∑
𝑗=1

(𝛽̂2 + 𝛾̂2)𝑗)𝜆.
(15)

For observation parameters, the unique stationary point
can be obtained by 𝜕𝑄 (Λ,Ψ | Λ̂, Ψ̂)𝜕𝜇0 = 0,

𝜕𝑄 (Λ,Ψ | Λ̂, Ψ̂)𝜕𝜇1 = 0,
𝜕𝑄 (Λ,Ψ | Λ̂, Ψ̂)𝜕Σ−1

0

= 0,
𝜕𝑄 (Λ,Ψ | Λ̂, Ψ̂)𝜕Σ−1

1

= 0.
(16)

Thus the explicit expressions of the updated Ψ∗ = (𝜇∗0 ,𝜇∗1 , Σ∗
0 , Σ∗

1 ) in each step are given by

𝜇∗0 = ∑𝑁
𝑖=1 ⟨𝑛1, 𝐶̂⟩ + ∑𝑀

𝑗=1 ⟨𝑛1, 𝐷̂⟩∑𝑁
𝑖=1 ⟨𝑠1, 𝐶̂⟩ + ∑𝑀

𝑗=1 ⟨𝑠1, 𝐷̂⟩ ,
Σ∗
0 = ∑𝑁

𝑖=1 ⟨𝑛3, 𝐶̂⟩ + ∑𝑀
𝑗=1 ⟨𝑛3, 𝐷̂⟩∑𝑁

𝑖=1 ⟨𝑠1, 𝐶̂⟩ + ∑𝑀
𝑗=1 ⟨𝑠1, 𝐷̂⟩ ,

𝜇∗1 = ∑𝑁
𝑖=1 ⟨𝑛2, 𝐶̂⟩ + ∑𝑀

𝑗=1 ⟨𝑛2, 𝐷̂⟩∑𝑁
𝑖=1 ⟨𝑠2, 𝐶̂⟩ + ∑𝑀

𝑗=1 ⟨𝑠2, 𝐷̂⟩ ,
Σ∗
1 = ∑𝑁

𝑖=1 ⟨𝑛4, 𝐶̂⟩ + ∑𝑀
𝑗=1 ⟨𝑛4, 𝐷̂⟩∑𝑁

𝑖=1 ⟨𝑠2, 𝐶̂⟩ + ∑𝑀
𝑗=1 ⟨𝑠2, 𝐷̂⟩ ,

(17)

where the form ⟨𝑎, 𝑏⟩ = 𝑎󸀠𝑏, 𝑛1 = (0, 𝑦1, ∑2
𝑛=1 𝑦𝑛, . . . ,∑𝑇

𝑛=1 𝑦𝑛)󸀠, 𝑠1 = (0, 1, . . . , 𝑇), 𝑛2 = (∑𝑇
𝑛=1 𝑦𝑛, ∑𝑇

𝑛=2 𝑦𝑛, . . . ,𝑦𝑇, 0)󸀠, 𝑠2 = (𝑇, . . . , 1, 0)󸀠, 𝑛3 = (0, (𝑦1 − 𝜇̂1)󸀠(𝑦1 − 𝜇̂1), . . . ,∑𝑇
𝑛=1(𝑦1 − 𝜇̂1)󸀠(𝑦1 − 𝜇̂1))󸀠, and 𝑛4 = (∑𝑇

𝑛=1(𝑦𝑛 − 𝜇̂2)󸀠(𝑦𝑛 −𝜇̂2), ∑𝑇
𝑛=2(𝑦𝑛 − 𝜇̂2)󸀠(𝑦𝑛 − 𝜇̂2), . . . , (𝑦𝑇 − 𝜇̂2)󸀠(𝑦𝑇 − 𝜇̂2), 0)󸀠.

The initial values to Λ̂ and Ψ̂ were assigned and EM
algorithm was employed to solve the parameters to be
estimated, the convergence criterion for which is |(Λ∗, Ψ∗) −(Λ̂, Ψ̂)| < 1𝑒 − 6. We assigned different initial values and the
results were very similar, which are shown in Tables 2 and 3.

3.2. Remaining Useful Life (RUL) Prediction. Let Π𝑘(𝑖) be
the posterior probability that given the observation data𝑦Δ, 𝑦2Δ, . . . , 𝑦𝑘Δ ∈ R2 the system is in state 𝑖 (1 ≤ 𝑖 ≤ 𝑘1 + 𝑘2)
at sampling time 𝑘Δ:Π𝑘 (𝑖) = 𝑃 (Θ𝑘Δ = 𝑖 | 𝜉 > 𝑘Δ, 𝑦Δ, 𝑦2Δ, . . . , 𝑦𝑘Δ, Π⃗𝑘−1) , (18)
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Table 2: Model parameters estimation with EM algorithm.

Parameters Initial values First iteration Second iteration Last iteration𝑝̂01 0.8 0.6897 0.9187 1.0000𝑝̂02 0.2 0.3103 0.0813 7.6502𝑒 − 05𝑘̂1 3 2 2 2𝑘̂2 3 1 2 2𝜆̂ 0.5 0.4063 0.2918 0.2069𝜇̂0 (1015) (13.656719.3175) (13.997619.3198) (15.920719.4560)𝜇̂1 (2030) (25.097033.5655) (27.013836.3763) (29.952838.8550)Σ̂0 (5 88 10) (5.2117 5.98795.9879 9.7890) (5.2980 6.32196.3219 9.7924) (5.3835 6.61106.6110 9.2166)Σ̂1 ( 50 100100 100) ( 89.6879 138.6759138.6759 200.8768) (102.8798 139.0890139.0890 203.3276) (123.1435 159.1407159.1407 212.8811)𝑄 × 103 — −2.48 −1.89 −1.45
Table 3: Model parameters estimation with EM algorithm using different initial values.

Parameters Initial values First iteration Second iteration Last iteration𝑝̂01 0.5 0.3176 0.8920 1.0000𝑝̂02 0.5 0.6824 0.1080 2.2018𝑒 − 08𝑘̂1 5 3 3 2𝑘̂2 5 2 2 2𝜆̂ 0.3 0.2663 0.2199 0.2070𝜇̂0 (1515) (13.876916.7687) (14.876818.9879) (15.921419.4561)𝜇̂1 (2535) (28.187936.9768) (29.018037.9671) (29.973138.8583)Σ̂0 ( 5 1010 5 ) (3.9112 7.08797.0879 6.0788) (5.1939 6.90786.9078 8.6892) (5.4165 6.63296.6329 9.1875)Σ̂1 (100 150150 200) (113.6877 152.3243152.3243 209.7609) (119.0451 157.9880157.9880 210.6791) (122.8959 159.2142159.2142 212.7090)𝑄 × 103 — −1.98 −1.53 −1.32

where∑𝑘1+𝑘2
𝑖=1 Π𝑘(𝑖) = 1, Π⃗𝑘 = (Π𝑘(1), Π𝑘(2), . . . , Π𝑘(𝑘1 + 𝑘2))

denotes the posterior probability vector. Suppose the system
always starts in the first phase of the healthy state, that is,

Π0(1) = 1. According to the Bayes’ theorem, the posterior
probability Π𝑘(𝑖) can be updated iteratively at each sampling
epoch by the following formula:

Π𝑘 (𝑖) = 𝑔 (𝑦𝑘Δ | Θ𝑘Δ = 𝑖, 𝜉 > 𝑘Δ, 𝑦(𝑘−1)Δ, Π⃗𝑘−1) × 𝑃 (Θ𝑘Δ = 𝑖 | 𝜉 > 𝑘Δ, 𝑦(𝑘−1)Δ, Π⃗𝑘−1)∑𝑘1+𝑘2
𝑗=1 𝑔 (𝑦𝑘Δ | Θ𝑘Δ = 𝑗, 𝜉 > 𝑘Δ, 𝑦(𝑘−1)Δ, Π⃗𝑘−1) × 𝑃 (Θ𝑘Δ = 𝑗 | 𝜉 > 𝑘Δ, 𝑦(𝑘−1)Δ, Π⃗𝑘−1) , (19)
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where 𝑃(Θ𝑘Δ = 𝑖, 𝜉 > 𝑘Δ, 𝑦(𝑘−1)Δ, Π⃗𝑘−1) =∑1≤𝑚≤𝑖 𝑃𝑚𝑖(Δ)Π𝑘−1(𝑚)/∑𝑘1+𝑘2
𝑚=1 ∑𝑘1+𝑘2

𝑗=𝑚 𝑃𝑚𝑗(Δ)Π𝑘−1(𝑚).
It can be obtained from (10) that 𝑦𝑘Δ | Θ𝑘Δ ∼ 𝑁𝑑(𝜇𝑥, Σ𝑥)

for 𝑥 = 1, 2; thus𝑔 (𝑦𝑘Δ | Θ𝑘Δ = 𝑖, 𝜉 > 𝑘Δ, 𝑦(𝑘−1)Δ, Π⃗𝑘−1)
= {𝑓 (𝑦𝑘Δ | 𝜇1, Σ1) if 𝑖 ∈ 𝐾1𝑓 (𝑦𝑘Δ | 𝜇2, Σ2) if 𝑖 ∈ 𝐾2, (20)

where 𝑓(𝑦𝑘Δ | 𝜇𝑥, Σ𝑥) = (1/√(2𝜋)𝑑 det(Σ𝑥)) exp (−(1/2)(𝑦𝑘Δ − 𝜇𝑥)󸀠Σ−1
𝑥 (𝑦𝑘Δ − 𝜇𝑥)), 𝑥 = 1, 2.

For the gearbox degeneration system, the estimated shape
parameters of Erlang distribution in the hidden states are𝑘1 = 𝑘2 = 2 (see Table 2); therefore the transition proba-
bility matrix 𝑃𝑖𝑗(Δ) can be obtained by solving Kolmogorov
backward differential equations:

𝑃𝑖𝑗 (𝑡) = ((((((
(

𝑒−𝜆𝑡 𝜆𝑡𝑒−𝜆𝑡 𝑝01 (𝜆𝑡)22! 𝑒−𝜆𝑡 𝑝01 (𝜆𝑡)33! 𝑒−𝜆𝑡 1 − 𝑒−𝜆𝑡 (1 + 𝜆𝑡 + 𝑝01 (𝜆𝑡)22! + 𝑝01 (𝜆𝑡)33! )0 𝑒−𝜆𝑡 𝑝01𝜆𝑡𝑒−𝜆𝑡 𝑝01 (𝜆𝑡)22! 𝑒−𝜆𝑡 1 − 𝑒−𝜆𝑡 (1 + 𝑝01𝜆𝑡 + 𝑝01 (𝜆𝑡)22! )0 0 𝑒−𝜆𝑡 𝜆𝑡𝑒−𝜆𝑡 1 − 𝑒−𝜆𝑡 (1 + 𝜆𝑡)0 0 0 𝑒−𝜆𝑡 1 − 𝑒−𝜆𝑡0 0 0 0 1
))))))
)

. (21)

Suppose at sampling time 𝑘Δ, the gear system has not
failed, that is, 𝜉 > 𝑘Δ; then for 𝑡 ≥ 0 and 𝑘1 = 𝑘2 = 2, the
conditional reliability function of RUL of the gear system is𝑅 (𝑡 | Π⃗𝑘) = 𝑃 (𝜉 − 𝑘Δ > 𝑡 | 𝜉 > 𝑘Δ, Π⃗𝑘)= 𝑃 (Θ𝑘Δ+𝑡 ∉ 𝐾3 | 𝜉 > 𝑘Δ, Π⃗𝑘)

= Π𝑘 (1) 𝑒−𝜆𝑡 (1 + 𝜆𝑡 + 𝑝01 (𝜆𝑡)22! + 𝑝01 (𝜆𝑡)33! )
+ Π𝑘 (2) 𝑒−𝜆𝑡 (1 + 𝑝01𝜆𝑡 + 𝑝01 (𝜆𝑡)22! )
+ Π𝑘 (3) 𝑒−𝜆𝑡 (1 + 𝜆𝑡) + Π𝑘 (4) 𝑒−𝜆𝑡.

(22)

Thus the PDF is:

𝑓 (𝑡 | Π⃗𝑘) = 𝑑 (1 − 𝑅 (𝑡 | Π⃗𝑘))𝑑𝑡 . (23)

Given the model parameters Λ = (𝑝01, 𝑝02, 𝑘1, 𝑘2, 𝜆) andΨ = (𝜇0, 𝜇1, Σ0, Σ1), (22) and (23) can be used to update the
conditional reliability function and the PDF using the con-
dition monitoring data obtained from each sampling epoch.
Taking file 88 to file 93 for analysis, the corresponding con-
ditional reliability functions are shown in Figure 14 and the
probability density functions in Figure 15, where “∗” rep-
resents the actual residual values corresponding to each
sampling file. As can be seen from Figure 15, from file 89, the
RUL distribution of the gear system is highly concentrated;
the main cause is that with the steady accumulation of
condition monitoring data, the uncertainty of the remaining
distribution lifetime gradually decreases while the accuracy
of the RUL prediction continually improves.

The MRL of the gear system is given by:𝜇𝑘Δ = 𝐸 (𝜉 − 𝑘Δ > 𝑡 | 𝜉 > 𝑘Δ, Π⃗𝑘)= 1𝜆 (2Π𝑘 (1) (1 + 𝑝01) + Π𝑘 (2) (1 + 2𝑝01)+ 2Π𝑘 (3) + Π𝑘 (4)) .
(24)

The data from file 1 to file 95 are selected for MRL
prediction. After each sampling completed, the life prediction
is performed when the new observations are available, and
then the predicted value is compared with the values that are
obtained using HMM. Meanwhile, as illustrated in Table 4,
the relative error (RE) between actual remaining useful lives
and the prediction results using different models are calcu-
lated. As can be seen in Table 4, with the increase of collected
data, theRE in the prediction results usingHSMMare smaller
than those using HMM, which is closer to the actual values.

4. Optimal Bayesian Control Scheme

4.1. Optimal Bayesian Control Chart Based onHSMM. In this
section, we design a multivariate Bayesian control chart to
detect the early fault of the helicopter gearbox. The optimal
control limit is used to determine the stopping time, of
which the objective is to minimize the long-run expected
average cost per unit time. In partially observable Markov
decision process (POMDP), it iswell known that the posterior
probability that the system is in the unhealthy state provides
enough information for maintenance decision making [13].
Let Π1

𝑘 be the posterior probability that the helicopter gear
system is in the unhealthy state:Π1

𝑘 = ∑
𝑖∈𝐾2

Π𝑘 (𝑖) = Π𝑘 (3) + Π𝑘 (4) , (25)

where the initial value Π1
0 = 0.
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Table 4: Comparison of RUL prediction and RE using different models.

File number ARL RUL RE
HSMM HMM HSMM HMM

1 19.34 19.801 19.800 0.024 0.024
2 19.206 19.013 19.942 0.010 0.038
3 19.071 18.203 19.801 0.046 0.038
4 18.937 18.019 19.689 0.049 0.040
5 18.803 16.981 19.332 0.097 0.028
6 18.669 15.002 19.340 0.196 0.036
7 18.535 13.200 19.185 0.288 0.035... ... ... ... ... ...
88 7.662 8.013 18.343 0.045 1.394
89 7.527 8.003 18.271 0.063 1.427
90 7.393 7.830 18.001 0.059 1.435
91 7.259 7.482 7.701 0.031 0.061
92 7.125 7.450 7.645 0.045 0.073
93 6.990 7.308 7.632 0.046 0.091
94 6.856 7.225 7.545 0.054 0.100
95 6.722 7.031 7.416 0.046 0.103

File 88
File 89
File 90

File 91
File 92
File 93
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Figure 14: Conditional reliability function in files 88∼93.
By renewal theory, the cost minimization problem with

fixed sampling interval is equivalent to seeking an optimal
value of Π∗ ∈ [0, 1], such that𝑔 (Π∗) = inf

Π∈[0,1]

𝐸Π∗ (CC)𝐸Π∗ (CL) , (26)

where CC and CL denote, respectively, the cycle cost and
cycle length.

The Bayesian control scheme is illustrated in Figure 16.
For the fixed control limit Π ∈ (0, 1), at each decision epoch,
the posterior probability vector Π⃗𝑘 is updated by Bayes’
theorem. At the sampling time 𝑘Δ, if Π1

𝑘 < Π, the system
will continue to run, of which the cost for each sampling is𝐶𝑆. If Π1

𝑘 ≥ Π, system should be stopped and full inspection
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Figure 15: Probability density function in files 88∼93.
is performed to determine whether the system is in state 0 or
not, for which the inspection cost rate and inspection time
are, respectively, 𝐶𝐼 and 𝑇𝐼. The gear system has probabilityΠ1

𝑘 to be in state 1 and probability 1 − Π1
𝑘 to be in state 0. If

the system is found to be in state 0 after a full inspection, then
nomaintenancemeasures are taken and the system continues
operating in the healthy condition. If the system is found to be
in state 1, preventivemaintenancemeasures will be takenwith
the maintenance cost rate 𝐶PM and the maintenance time𝑇PM. If the posterior probability Π1

𝑘 is not beyond the fixed
control limit Π but still fails, that is, a random failure occurs,
we need to immediately take failure replacement measures
with corresponding maintenance cost rate and replacement
time 𝐶𝐹 and 𝑇𝐹, respectively. When the system takes full
inspection, preventive maintenance, or failure replacement,
the lost production cost rate 𝐶LP will be incurred. When the
system operates in the warning state, additional operating
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Figure 16: Schematic of Bayesian control approach.

cost rate 𝐶AO and maintenance cost rate 𝐶AM will be
generated. We further assume that after the inspection, the
preventive maintenance, or failure replacement, the system
will begin from a new cycle.

We design an effective algorithm in the semi-Markov
decision process (SMDP) framework to obtain the optimal
control limit. In order to discretize the interval [0, 1], it is
sufficient to choose the number of subintervals 𝐿 = 30 to
provide effective accuracy. For 𝐿 = 30, we define the SMDP
in state (𝑖1, 𝑖2, . . . , 𝑖𝑘1+𝑘2−1); that is, if the posterior probability
in state {1} lies in the interval [(𝑖1 − 1)/𝐿, 𝑖1/𝐿], the posterior
probability in state {2} lies in the interval [(𝑖2−1)/𝐿, 𝑖2/𝐿], . . .,
and the posterior probability in state {𝑘1 + 𝑘2 − 1} lies in the
interval [(𝑖𝑘1+𝑘2−1−1)/𝐿, 𝑖𝑘1+𝑘2−1/𝐿]. IfΠ1

𝑘 ≥ Π, the preventive
maintenance is performed, then the SMDP is defined in state
PM. If the system fails, the SMDP is defined in state 𝐹. Let𝑆 = {(𝑖1, 𝑖2, . . . , 𝑖𝑘1+𝑘2−1) : ∑𝑘1+𝑘2−1

𝑚=1 𝑖𝑚 ≤ 𝐿, 𝑖𝑚 ∈ N+}, then the
state space for the SMDP is defined as 𝑆 = {(1, 0, . . . , 0)} ∪ 𝑆 ∪{PM} ∪ {𝐹}, where (1, 0, . . . , 0) presents the gear system is in
state one at the initial moment.

For the fixed control limit Π, 𝑔(Π) can be obtained by
solving the following linear equations:

V𝑥 = 𝑐𝑥 − 𝑔 (Π) 𝜏𝑥 + ∑
𝑥󸀠∈𝑆

𝑃𝑥,𝑥󸀠V𝑥󸀠 for 𝑥, 𝑥󸀠 ∈ 𝑆, (27)

V0 = 0, (28)

where V𝑥 is the relative value until the next decision epoch
given the current state 𝑥 ∈ 𝑆. 𝑐𝑥 is the expected cost incurred
until the next decision epoch given the current state 𝑥 ∈ 𝑆.𝜏𝑥 is the expected sojourn time until the next decision epoch
given the current state 𝑥 ∈ 𝑆.𝑃𝑥,𝑥󸀠 is the probability that at the
next decision epoch the system will be in state 𝑥󸀠 ∈ 𝑆 given
the current state is 𝑥󸀠 ∈ 𝑆.

Next, we derive the closed form expressions of each quan-
tity in (27). For each (𝑖1, 𝑖2, . . . , 𝑖𝑘1+𝑘2−1), (𝑖󸀠1, 𝑖󸀠2, . . . , 𝑖󸀠𝑘1+𝑘2−1) ∈𝑆, and 𝑗−𝑎 = (𝑖󸀠𝑎 − 1)/𝐿, 𝑗+𝑎 = 𝑖󸀠𝑎/𝐿 for 𝑎 = 1, . . . , 𝑘1 + 𝑘2 − 1,
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the transition probabilities of SMDP are calculated by the
following formula:𝑃(𝑖1 ,𝑖2 ,...,𝑖𝑘1+𝑘2−1)(𝑖󸀠1 ,𝑖󸀠2,...,𝑖󸀠𝑘1+𝑘2−1) = 𝑃 (𝑗−1 ≤ Π𝑘 (1) < 𝑗+1 , . . . ,𝑗−𝑘1+𝑘2−1 ≤ Π𝑘 (𝑘1 + 𝑘2 − 1) < 𝑗+𝑘1+𝑘2−1, 𝜉 > 𝑘Δ | 𝜉

> (𝑘 − 1) Δ, Π⃗𝑘−1) = 𝑘1+𝑘2∑
𝑚=1

𝑃 (𝑗−1 ≤ Π𝑘 (1)< 𝑗+1 , . . . , 𝑗−𝑘1+𝑘2−1 ≤ Π𝑘 (𝑘1 + 𝑘2 − 1) < 𝑗+𝑘1+𝑘2−1 | 𝜉> 𝑘Δ, Π⃗𝑘−1, Θ𝑘Δ = 𝑚) × 𝑃 (Θ𝑘Δ = 𝑚 | Π⃗𝑘−1)× 𝑅 (Δ | Π⃗𝑘−1) .
(29)

From (10) we can further obtain:

𝑓 (𝑦𝑘Δ | 𝜇1, Σ1)𝑓 (𝑦𝑘Δ | 𝜇0, Σ0)= (󵄨󵄨󵄨󵄨Σ0
󵄨󵄨󵄨󵄨 ⋅ 󵄨󵄨󵄨󵄨Σ1

󵄨󵄨󵄨󵄨−1)1/2 exp (−12 (𝑉𝑘 + 𝐶)) , (30)

where 𝑉𝑘 = (𝑌𝑘Δ − 𝐵)󸀠𝐴(𝑌𝑘Δ − 𝐵), 𝐴 = Σ−1
1 − Σ−1

0 , 𝐵 = (Σ−1
1 −Σ−1

0 )−1(Σ−1
1 𝜇1−Σ−1

0 𝜇0),𝐶 = (𝜇𝑇1 Σ−1
1 𝜇1−𝜇𝑇0 Σ−1

0 𝜇0)−𝐵𝑇(Σ−1
1 𝜇1−Σ−1

0 𝜇0).
Thus (18) can be expressed as follows:

Π𝑘 (𝑚) = {{{{{{{{{{{{{
𝑐𝑚Π𝑘−1∑∀𝑗∈𝐾1

𝑐𝑗Π𝑘−1 + (𝑓 (𝑦𝑘Δ | 𝜇1, Σ1) /𝑓 (𝑦𝑘Δ | 𝜇0, Σ0))∑∀𝑗∈𝐾2
𝑐𝑗Π𝑘−1 if 𝑚 ∈ 𝐾1𝑐𝑚Π𝑛−1(𝑓 (𝑦𝑘Δ | 𝜇0, Σ0) /𝑓 (𝑦𝑘Δ | 𝜇1, Σ1))∑∀𝑗∈𝐾1

𝑐𝑗Π𝑘−1 + ∑∀𝑗∈𝐾2
𝑐𝑗Π𝑘−1 if 𝑚 ∈ 𝐾2, (31)

where 𝑐𝑚Π𝑘−1 = ∑𝑚
𝑛=1Π𝑘−1(𝑛)𝑃𝑛𝑚(Δ).

In (29), for 𝑚 ∈ 𝐾1, 𝑃(𝑗−𝑚 ≤ Π𝑘(𝑚) < 𝑗+𝑚 | 𝜉 > 𝑘Δ, Π⃗𝑘−1)
is computed as follows:

𝑃 (𝑗−𝑚 ≤ Π𝑘 (𝑚) < 𝑗+𝑚 | 𝜉 > 𝑘Δ, Π⃗𝑘−1) = 𝑘1+𝑘2∑
𝑚=1

𝑃(−2
⋅ ln((𝑐𝑚Π𝑘−1 − 𝑗−𝑚∑𝑗∈𝐾1

𝑐𝑗Π𝑘−1) (󵄨󵄨󵄨󵄨Σ0
󵄨󵄨󵄨󵄨−1 ⋅ 󵄨󵄨󵄨󵄨Σ1

󵄨󵄨󵄨󵄨)1/2𝑗−𝑚∑𝑗∈𝐾2
𝑐𝑗Π𝑘−1 )

− 𝐶 ≤ 𝑉𝑘 < −2
⋅ ln((𝑐𝑚Π𝑘−1 − 𝑗+𝑚∑𝑗∈𝐾1

𝑐𝑗Π𝑘−1) (󵄨󵄨󵄨󵄨Σ0
󵄨󵄨󵄨󵄨−1 ⋅ 󵄨󵄨󵄨󵄨Σ1

󵄨󵄨󵄨󵄨)1/2𝑗+𝑚∑𝑗∈𝐾2
𝑐𝑗Π𝑘−1 )

− 𝐶 | Θ𝑘Δ = 𝑚) 𝑐𝑚Π𝑘−1∑𝑘1+𝑘2
𝑗=1 𝑐𝑗Π𝑘−1 =

𝑘1+𝑘2∑
𝑚=1

𝑃 (𝑇 (𝑗−𝑚)
≤ 𝑉𝑘 < 𝑇 (𝑗+𝑚) | Θ𝑘Δ = 𝑚) 𝑐𝑚Π𝑘−1∑𝑘1+𝑘2

𝑗=1 𝑐𝑗Π𝑘−1 .

(32)

For 𝑚 ∈ 𝐾2, the probability 𝑃(𝑗−𝑚 ≤ Π𝑘(𝑚) < 𝑗+𝑚 | 𝜉 >𝑘Δ, Π⃗𝑘−1) can be derived using the similarmethod in (32) and
is omitted. So the first item in (29) can be written as follows:𝑃 (𝑗−1 ≤ Π𝑘 (1) < 𝑗+1 , . . . , 𝑗−𝑘1+𝑘2−1 ≤ Π𝑘 (𝑘1 + 𝑘2 − 1)< 𝑗+𝑘1+𝑘2−1 | 𝜉 > 𝑘Δ, Π⃗𝑘−1)

= 𝑘1+𝑘2∑
𝑚=1

𝑃 (max (𝑇 (𝑗−1 ) , . . . , 𝑇 (𝑗−𝑘1+𝑘2−1)) ≤ 𝑉𝑘
< min (𝑇 (𝑗+1 ) , . . . , 𝑇 (𝑗+𝑘1+𝑘2−1)) | Θ𝑘Δ = 𝑚)
⋅ 𝑐𝑚Π𝑘−1∑𝑘1+𝑘2

𝑗=1 𝑐𝑗Π𝑘−1 .
(33)

Since𝑌𝑘Δ−𝐵 | Θ𝑘Δ ∈ 𝐾1 ∼ 𝑁(𝜇0−𝐵, Σ0),𝑌𝑘Δ−𝐵 | Θ𝑘Δ ∈𝐾2 ∼ 𝑁(𝜇1 − 𝐵, Σ1), the probability in (33) can be calculated
using Theorem 3.1 proposed by Provost and Rudiuk [24].
Next, the other transition probabilities in SMDP are derived.

If Π1
𝑘−1 ≥ Π∗, after full inspection, the probability of

system in state 1, that is, true alarm occurs, is given by𝑃(𝑖1 ,𝑖2,...,𝑖𝑘1+𝑘2−1),PM = Π1
𝑘−1 = Π𝑘 (3) + Π𝑘 (4) . (34)

Also, after full inspection, the gear system may be found
in healthy state; the probability is given by𝑃(𝑖1 ,𝑖2 ,...,𝑖𝑘1+𝑘2−1),(1,0,...,0) = 1 − Π1

𝑘−1= 1 − Π𝑘 (3) − Π𝑘 (4) . (35)

IfΠ1
𝑘−1 < Π∗, the probability of failure for the gear system

is given by𝑃(𝑖1 ,𝑖2 ,...,𝑖𝑘1+𝑘2−1),𝐹 = 1 − 𝑅 (Δ | Π⃗𝑘−1) = 1 − Π𝑘−1 (1)
⋅ 𝑒−𝜆Δ (1 + 𝜆Δ + 𝑝01 (𝜆Δ)22! + 𝑝01 (𝜆Δ)33! )
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− Π𝑘−1 (2) 𝑒−𝜆Δ (1 + 𝑝01𝜆Δ + 𝑝01 (𝜆Δ)22! )
− Π𝑘−1 (3) 𝑒−𝜆Δ (1 + 𝜆Δ) − Π𝑘−1 (4) 𝑒−𝜆Δ.

(36)
The remainder transition probabilities are given by𝑃𝐹,(1,0,...,0) = 1,𝑃PM,(1,0,...,0) = 1. (37)

If Π1
𝑘−1 ≥ Π∗, the corresponding expected cost and

expected sojourn time are given by𝑐(𝑖1 ,𝑖2,...,𝑖𝑘1+𝑘2−1) = (𝐶𝐼 + 𝐶LP) ⋅ 𝑇𝐼,𝜏(𝑖1 ,𝑖2,...,𝑖𝑘1+𝑘2−1) = 𝑇𝐼. (38)

If Π1
𝑘−1 < Π∗, the expected cost and expected sojourn

time can be computed as follows:𝑐(𝑖1 ,𝑖2 ,...,𝑖𝑘1+𝑘2−1)= 𝐶𝑠 ∑
(𝑖󸀠
1
,𝑖󸀠
2
,...,𝑖󸀠
𝑘1+𝑘2−1

)∈𝑆

𝑃(𝑖1 ,𝑖2,...,𝑖𝑘1+𝑘2−1),(𝑖󸀠1 ,𝑖󸀠2,...,𝑖󸀠𝑘1+𝑘2−1)
+ (𝐶𝐹 + 𝐶LP) ⋅ 𝑇𝐹 ⋅ 𝑃(𝑖1 ,𝑖2,...,𝑖𝑘1+𝑘2−1),𝐹
+ (𝐶AO + 𝐶AM) ∫Δ

0
∑
𝑗∈𝐾2

𝑗∑
𝑖=1

Π𝑘−1 (𝑖) 𝑃𝑖𝑗 (𝑡) 𝑑𝑡,
𝜏(𝑖1 ,𝑖2,...,𝑖𝑘1+𝑘2−1)= Δ ∑

(𝑖󸀠
1
,𝑖󸀠
2
,...,𝑖󸀠
𝑘1+𝑘2−1

)∈𝑆

𝑃(𝑖1 ,𝑖2,...,𝑖𝑘1+𝑘2−1)(𝑖󸀠1 ,𝑖󸀠2 ,...,𝑖󸀠𝑘1+𝑘2−1)
+ ∫Δ

0
(𝑇𝐹 + 𝑡) 𝑓 (𝑡 | Π⃗𝑘−1) 𝑑𝑡.

(39)

If the gear system is in PM or 𝐹 state, the corresponding
expected costs and expected sojourn times are given by𝑐PM = (𝐶𝑃 + 𝐶LP) ⋅ 𝑇PM,𝑐𝐹 = (𝐶𝐹 + 𝐶LP) ⋅ 𝑇𝐹,𝜏PM = 𝑇PM,𝜏𝐹 = 𝑇𝐹.

(40)

By setting the maintenance time parameters 𝑇𝐼 = 3 h,𝑇PM = 15 h, and 𝑇𝐹 = 30 h and maintenance cost parameters𝐶𝑆 = 20, 𝐶𝐼 = 100, 𝐶PM = 300, 𝐶𝐹 = 1000, 𝐶LP = 300, 𝐶AO =100, and 𝐶AM = 200, we coded the computational algorithm
in MATLAB R2015b to calculate the different expected aver-
age costs under different control limitsΠ.The optimal control
limit was Π∗ = 0.71 and the corresponding average cost was
equal to 113.59. The Bayesian control chart of the helicopter
gear system is shown in Figure 17. It is observed that based
on HSMM the posterior probability Π1

𝑘 firstly exceeds the
optimal control limit at file 89, which indicates that the system
need to be stopped to take full inspection at this moment.
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Figure 17: Optimal multivariate Bayesian control chart of the gear-
box.

4.2. Comparison with Other Maintenance Policies. Using the
same maintenance time and cost parameters, the optimal
control limit Π∗ = 0.28 was obtained in the Bayesian control
chart based on HMM, in which the sojourn time in each hid-
den states follows exponential distribution. The correspond-
ing average cost was equal to 121.72. It should be noted that
the average cost concluded by HSMM was less than that by
HMM.As shown in Figure 17, while based onHMM, the pos-
terior probability Π1

𝑘 firstly exceeds the optimal control limit
at file 91. The multivariate Bayesian control chart indicates
that the proposed Bayesian control scheme can detect the
fault of the gear of interest much earlier than the method
based on HMM.

Next, we considered the traditional age-based replace-
ment policy, which is well known that it does not take into
account condition monitoring information. For the heli-
copter gearbox, the expected cycle cost (CC) under age-based
replacement policy is the sum of failure cost, additional
operating and maintenance costs while the system operates
in unhealthy state and the preventive maintenance cost:𝐸𝜏 (CC) = (𝐶𝐹 + 𝐶LP) 𝑇𝐹 (1 − 𝑅 (𝜏 | 󳨀⇀Π0))+ (𝐶AO + 𝐶AM) ∫𝜏

0
𝑃13 (𝑡) + 𝑃14 (𝑡) 𝑑𝑡+ (𝐶𝑃 + 𝐶LP) 𝑇𝑃𝑅(𝜏 | 󳨀⇀Π0) ,

(41)

where 𝜏 is the stopping time.
The expected cycle length (CL) is the sum of the expected

time under normal operation, replacement time caused by
failure, and preventive maintenance time:𝐸𝜏 (CL) = ∫𝜏

0
𝑅(𝑡 | 󳨀⇀Π0) 𝑑𝑡 + 𝑇𝐹 (1 − 𝑅 (𝜏 | 󳨀⇀Π0))+ 𝑇𝑃𝑅(𝜏 | 󳨀⇀Π0) . (42)
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Table 5:The optimalmaintenance cost under differentmaintenance
policies.

Policy Optimal parameters Expected
average costΠ∗ 𝜏∗

Bayesian (HSMM) 0.71 — 113.59
Bayesian (HMM) 0.28 — 121.72
Aged-based
replacement — 17.24 140.23

Then the long-run expected average cost per unit time
under age-based replacement policy is equivalent to finding
the optimal stopping time 𝜏∗, such that𝜏∗ = arg inf

𝐸𝜏 (CC)𝐸𝜏 (CL) . (43)

Table 5 shows the optimal values obtained under different
policies, which are, respectively, the multivariate Bayesian
control chart based on HSMM and HMM and the age-based
replacement policy. It is interesting to find that the expected
average cost using the Bayesian control chart based on the
HSMM is considerably lower than the other policies, while
the cost obtained by the age-based replacement policy is
the highest due to the irrespective of condition monitoring
information. This is reasonable because, for the helicopter
gear system, the cost incurred by failure is always higher than
the cost incurred by inspection and preventive maintenance
measures.

5. Conclusions

In this paper, we have proposed a novel optimal Bayesian
control scheme for the early fault detection of the partially
observable helicopter gear system. The GMR signal was
selected for data preprocessing to eliminate the influence
of load variation from the original signal of the helicopter
gearbox. The healthy portion of GMR signal was used to fit
a VAR model; thus the residuals of whole data history were
obtained. Without the restriction that the sojourn time in
each hidden state was exponentially distributed, the general
Erlang distribution was considered for modeling the gear
system’s sojourn time in each of the hidden states in a 3-
state HSMM. The EM algorithm was employed to estimate
the unknown parameters of the model. Using HSMM to
describe the deterioration process of the gear system, several
important quantities for the gearbox residual life prediction,
such as conditional reliability distribution function, PDF and
MRL were derived in terms of the posterior probability that
the system was in each hidden state. The comparison with
the life prediction method based on HMM indicated that
the relative errors were smaller using HSMM. An optimal
multivariate Bayesian control chart with cost-effective crite-
rion was developed. Moreover, the optimal control limit was
solved in the SMDP framework. The comparison with the
Bayesian control chart based on HMM as well as the age-
based replacement policy indicated that the proposed multi-
variate Bayesian control scheme provided accurate early fault

detection to the helicopter gear system with the minimum
cost.

In this research, we have considered the multivariate
Bayesian control chart under fixed sampling interval; further
improvement can be obtained by considering two or more
sampling intervals or the availability maximization criterion
to obtain the optimal control limit, which can be a suitable
topic for the future work.

Appendix

Formula (6) can be rewritten as a state space model; the
corresponding state and observation equations are given by

𝛼𝑛 = 𝐷 + 𝑇𝛼𝑛−1 + 𝐸𝑛,𝑍𝑛 = 𝐻𝛼𝑛, (A.1)

where

𝛼𝑛 = (𝑍𝑛, 𝑍𝑛−1, . . . , 𝑍𝑛−𝑝̂+1)󸀠 ,𝐷 = (𝛿̂, 0, . . . , 0)󸀠 ,𝐸𝑛 = (𝜀𝑛, 0, . . . , 0)󸀠 ,𝐻 = (𝐼2, 0, . . . , 0) ,
𝑇 = (

(
Φ̂1 Φ̂2 ⋅ ⋅ ⋅ Φ̂𝑝̂𝐼2 0 ⋅ ⋅ ⋅ 0... d d

...0 ⋅ ⋅ ⋅ 𝐼2 0
)
)

,
(A.2)

and 𝜀𝑛 are i.i.d.𝑁2(0, 𝐶̂).
For each𝑚 ≥ 0, we define
𝛼𝑛+𝑚|𝑛 = 𝐸 (𝛼𝑛+𝑚 | 󳨀⇀𝑍𝑛) ,𝑃𝑛+𝑚|𝑛= 𝐸 ((𝛼𝑛+𝑚 − 𝛼𝑛+𝑚|𝑛) (𝛼𝑛+𝑚 − 𝛼𝑛+𝑚|𝑛)𝑇 | 󳨀⇀𝑍𝑛) ,𝜂𝑛+𝑚|𝑛 = 𝑍𝑛+𝑚 − 𝐸 (𝑍𝑛+𝑚 | 󳨀⇀𝑍𝑛) ,𝑓𝑛+𝑚|𝑛 = 𝐸 (𝜂𝑛+𝑚|𝑛𝜂𝑇𝑛+𝑚|𝑛 | 󳨀⇀𝑍𝑛) .

(A.3)

Then, the following recursive equations of Kalman filter
are given by

𝛼𝑛+1|𝑛 = 𝐷 + 𝑇𝛼𝑛−1,𝑓𝑛+1|𝑛 = 𝐻𝑃𝑛+1|𝑛𝐻󸀠,
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𝑃𝑛+1|𝑛 = 𝑇𝑃𝑛|𝑛𝑇󸀠 + 𝐶̂,𝛼𝑛+1|𝑛+1 = 𝛼𝑛+1|𝑛 + (𝑃𝑛+1|𝑛𝐻󸀠) (𝑓−1
𝑛+1|𝑛) 𝜂𝑛+1|𝑛,𝜂𝑛+1|𝑛 = 𝑍𝑛+1 − 𝐻𝛼𝑛+1|𝑛,𝑃𝑛+1|𝑛+1 = 𝑃𝑛+1|𝑛 − (𝑃𝑛+1|𝑛𝐻󸀠) (𝑓−1
𝑛+1|𝑛)𝐻𝑃𝑛+1|𝑛

(A.4)

and the initial values are given by𝛼0|0 = (𝐼2𝑝 − 𝑇)−1𝐷,𝑃0|0 = vec−1 [(𝐼(2𝑝)2 − 𝑇 ⊗ 𝑇)−1 vec (𝐶̂)] . (A.5)

For each 𝑛 ≤ 𝑝̂, using the recursive equations above we
obtain 𝑌𝑛 = 𝑍𝑛 − 𝐸𝛾̂ (𝑍𝑛 | 󳨀⇀𝑍𝑛−1) = 𝜂𝑛|𝑛−1. (A.6)
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