11 research outputs found

    Advances in Perovskite Solar Cells

    Get PDF
    Organolead halide perovskite materials possess a combination of remarkable optoelectronic properties, such as steep optical absorption edge and high absorption coefficients, long charge carrier diffusion lengths and lifetimes. Taken together with the ability for low temperature preparation, also from solution, perovskite-based devices, especially photovoltaic (PV) cells have been studied intensively, with remarkable progress in performance, over the past few years. The combination of high efficiency, low cost and additional (non-PV) applications provides great potential for commercialization. Performance and applications of perovskite solar cells often correlate with their device structures. Many innovative device structures were developed, aiming at large-scale fabrication, reducing fabrication cost, enhancing the power conversion efficiency and thus broadening potential future applications. This review summarizes typical structures of perovskite solar cells and comments on novel device structures. The applications of perovskite solar cells are discussed

    Advances in Perovskite Solar Cells

    Get PDF
    Organolead halide perovskite materials possess a combination of remarkable optoelectronic properties, such as steep optical absorption edge and high absorption coefficients, long charge carrier diffusion lengths and lifetimes. Taken together with the ability for low temperature preparation, also from solution, perovskite-based devices, especially photovoltaic (PV) cells have been studied intensively, with remarkable progress in performance, over the past few years. The combination of high efficiency, low cost and additional (non-PV) applications provides great potential for commercialization. Performance and applications of perovskite solar cells often correlate with their device structures. Many innovative device structures were developed, aiming at large-scale fabrication, reducing fabrication cost, enhancing the power conversion efficiency and thus broadening potential future applications. This review summarizes typical structures of perovskite solar cells and comments on novel device structures. The applications of perovskite solar cells are discussed

    Controlling Homogenous Spherulitic Crystallization for high-efficiency Planar Perovskite Solar Cells fabricated under ambient high-humidity conditions

    Get PDF
    The influence of precursor solution properties, fabrication environment, and antisolvent properties on the microstructural evolution of perovskite films is reported. First, the impact of fabrication environment on the morphology of methyl ammonium lead iodide (MAPbI3) perovskite films with various Lewis‐base additives is reported. Second, the influence of antisolvent properties on perovskite film microstructure is investigated using antisolvents ranging from nonpolar heptane to highly polar water. This study shows an ambient environment that accelerates crystal growth at the expense of nucleation and introduces anisotropies in crystal morphology. The use of antisolvents enhances nucleation but also influences ambient moisture interaction with the precursor solution, resulting in different crystal morphology (shape, size, dispersity) in different antisolvents. Crystal morphology, in turn, dictates film quality. A homogenous spherulitic crystallization results in pinhole‐free films with similar microstructure irrespective of processing environment. This study further demonstrates propyl acetate, an environmentally benign antisolvent, which can induce spherulitic crystallization under ambient environment (52% relative humidity, 25 °C). With this, planar perovskite solar cells with ≈17.78% stabilized power conversion efficiency are achieved. Finally, a simple precipitation test and in situ crystallization imaging under an optical microscope that can enable a facile a priori screening of antisolvents is shown

    4-Terminal Inorganic Perovskite/Organic Tandem Solar Cells Offer 22% Efficiency

    No full text
    Abstract After fast developing of single-junction perovskite solar cells and organic solar cells in the past 10 years, it is becoming harder and harder to improve their power conversion efficiencies. Tandem solar cells are receiving more and more attention because they have much higher theoretical efficiency than single-junction solar cells. Good device performance has been achieved for perovskite/silicon and perovskite/perovskite tandem solar cells, including 2-terminal and 4-terminal structures. However, very few studies have been done about 4-terminal inorganic perovskite/organic tandem solar cells. In this work, semi-transparent inorganic perovskite solar cells and organic solar cells are used to fabricate 4-terminal inorganic perovskite/organic tandem solar cells, achieving a power conversion efficiency of 21.25% for the tandem cells with spin-coated perovskite layer. By using drop-coating instead of spin-coating to make the inorganic perovskite films, 4-terminal tandem cells with an efficiency of 22.34% are made. The efficiency is higher than the reported 2-terminal and 4-terminal inorganic perovskite/organic tandem solar cells. In addition, equivalent 2-terminal tandem solar cells were fabricated by connecting the sub-cells in series. The stability of organic solar cells under continuous illumination is improved by using semi-transparent perovskite solar cells as filter

    Beyond Fullerenes: Indacenodithiophene-Based Organic Charge-Transport Layer toward Upscaling of Low-Cost Perovskite Solar Cells

    No full text
    Phenyl-C<sub>61</sub>-butyric acid methyl ester (PCBM) is universally used as the electron-transport layer (ETL) in the low-cost inverted planar structure of perovskite solar cells (PeSCs). PCBM brings tremendous challenges in upscaling of PeSCs using industry-relevant methods due to its aggregation behavior, which undermines the power conversion efficiency and stability. Herein, we highlight these, seldom reported, challenges with PCBM. Furthermore, we investigate the potential of nonfullerene indacenodithiophene (IDT)-based molecules by employing a commercially available variant, 3,9-bis­(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis­(4-hexylphenyl)-dithieno­[2,3-<i>d</i>:2′,3′-<i>d</i>′]-<i>s</i>-indaceno­[1,2-<i>b</i>:5,6-<i>b</i>′] dithiophene (ITIC), as a PCBM replacement in ambient-processed PeSCs. Films fabrication by laboratory-based spin-coating and industry-relevant slot-die coating methods are compared. Although similar power-conversion efficiencies are achieved with both types of ETL in a simple device structure fabricated by spin-coating, the nanofibriller morphology of ITIC compared to the aggregated morphology of PCBM films enables improved mechanical integrity and stability of ITIC devices. Upon slot-die coating, the aggregation of PCBM is exacerbated, leading to significantly lower power-conversion efficiency of devices than spin-coated PCBM as well as slot-die-coated ITIC devices. Our results clearly indicate that IDT-based molecules have great potential as an ETL in PeSCs, offering superior properties and upscaling compatibility than PCBM. Thus, we present a short summary of recently emerged nonfullerene IDT-based molecules from the field of organic solar cells and discuss their scope in PeSCs as electron or hole-transport layer

    CsPb(IxBr1− x)3 solar cells

    Get PDF
    Owing to its nice performance, low cost, and simple solution-processing, organic-inorganic hybrid perovskite solar cell (PSC) becomes a promising candidate for next-generation high-efficiency solar cells. The power conversion efficiency (PCE) has boosted from 3.8% to 25.2% over the past ten years. Despite the rapid progress in PCE, the device stability is a key issue that impedes the commercialization of PSCs. Recently, all-inorganic cesium lead halide perovskites have attracted much attention due to their better stability compared with their organic-inorganic counterpart. In this progress report, we summarize the properties of CsPb(IxBr1− x)3 and their applications in solar cells. The current challenges and corresponding solutions are discussed. Finally, we share our perspectives on CsPb(IxBr1− x)3 solar cells and outline possible directions to further improve the device performance
    corecore