10 research outputs found

    APA SAJA TIPE BERPIKIR PROBLEM-SOLVERS DALAM MEMECAHKAN MASALAH GEOMETRI ANALITIK?

    Get PDF
    Setiap problem-solver memiliki tipe yang berbeda. Adapun tipe berpikir digolongkan menjadi tipe berpikir konseptual, semi-konseptual, dan komputasional. Namun demikian belum ada penelitian terkait tipe berpikir dalam memecahkan masalah geometri analitik. Penelitian bertujuan memaparkan tipe karakteristik berpikir problem-solvers dalam memecahkan masalah geometri analitik. Penelitian merupakan penelitian kualitatif deskriptif dengan partisipan yaitu mahasiswa calon guru di Prodi Pendidikan Matematika FKIP Universitas Muhammadiyah Surakarta. Instrumen penelitian yang dipekerjakan yaitu masalah/tes geometri analitik, lembar observasi, dan pedoman wawancara. Instrumen divalidasi oleh beberapa ahli. Data diperoleh menggunakan metode tes, observasi, dan wawancara mendalam. Keabsahan data yang dipekerjakan yaitu triangulasi metode. Data dianalisis melalui tahap reduksi, penyajian, dan penarikan kesimpulan. Adapun penelitian menyimpulkan tipe berpikir konseptual, semikonseptual, dan komputasional. Ketiga tipe berpikir memiliki penciri utama dalam memecahkan masalah geometri analitik. Each problem-solver has different characteristics. The characteristics of thinking are classified into conceptual, semi-conceptual, and computational thinking characteristics. However, the thinking characteristics in solving analytical geometry is not known yet. The research aims to explain how the characteristics of thinking problem-solvers in solving the problem of analytical geometry. Research is descriptive qualitative research with participants, namely prospective teachers in the Mathematics Education Program FKIP University of Muhammadiyah Surakarta. The research instruments employed are analytical geometry problems/tests, observation sheets, and interview guidelines. Some experts validate the instrument. The data was obtained using a test, observation, and in-depth interview methods. The validity of the data employed is the triangulation method. The data is analyzed through the stages of reduction, presentation, and withdrawal of conclusions. The study concluded the characteristics of conceptual, semi conceptual, and computational thinking. The each thinking characteristics have their own main feature

    Characteristics and outcomes of an international cohort of 600 000 hospitalized patients with COVID-19

    Get PDF
    Background: We describe demographic features, treatments and clinical outcomes in the International Severe Acute Respiratory and emerging Infection Consortium (ISARIC) COVID-19 cohort, one of the world's largest international, standardized data sets concerning hospitalized patients. Methods: The data set analysed includes COVID-19 patients hospitalized between January 2020 and January 2022 in 52 countries. We investigated how symptoms on admission, co-morbidities, risk factors and treatments varied by age, sex and other characteristics. We used Cox regression models to investigate associations between demographics, symptoms, co-morbidities and other factors with risk of death, admission to an intensive care unit (ICU) and invasive mechanical ventilation (IMV). Results: Data were available for 689 572 patients with laboratory-confirmed (91.1%) or clinically diagnosed (8.9%) SARS-CoV-2 infection from 52 countries. Age [adjusted hazard ratio per 10 years 1.49 (95% CI 1.48, 1.49)] and male sex [1.23 (1.21, 1.24)] were associated with a higher risk of death. Rates of admission to an ICU and use of IMV increased with age up to age 60 years then dropped. Symptoms, co-morbidities and treatments varied by age and had varied associations with clinical outcomes. The case-fatality ratio varied by country partly due to differences in the clinical characteristics of recruited patients and was on average 21.5%. Conclusions: Age was the strongest determinant of risk of death, with a ∼30-fold difference between the oldest and youngest groups; each of the co-morbidities included was associated with up to an almost 2-fold increase in risk. Smoking and obesity were also associated with a higher risk of death. The size of our international database and the standardized data collection method make this study a comprehensive international description of COVID-19 clinical features. Our findings may inform strategies that involve prioritization of patients hospitalized with COVID-19 who have a higher risk of death

    The value of open-source clinical science in pandemic response: lessons from ISARIC

    No full text
    International audienc

    The value of open-source clinical science in pandemic response: lessons from ISARIC

    No full text

    Characteristics and outcomes of COVID-19 patients admitted to hospital with and without respiratory symptoms

    No full text
    Background: COVID-19 is primarily known as a respiratory illness; however, many patients present to hospital without respiratory symptoms. The association between non-respiratory presentations of COVID-19 and outcomes remains unclear. We investigated risk factors and clinical outcomes in patients with no respiratory symptoms (NRS) and respiratory symptoms (RS) at hospital admission. Methods: This study describes clinical features, physiological parameters, and outcomes of hospitalised COVID-19 patients, stratified by the presence or absence of respiratory symptoms at hospital admission. RS patients had one or more of: cough, shortness of breath, sore throat, runny nose or wheezing; while NRS patients did not. Results: Of 178,640 patients in the study, 86.4 % presented with RS, while 13.6 % had NRS. NRS patients were older (median age: NRS: 74 vs RS: 65) and less likely to be admitted to the ICU (NRS: 36.7 % vs RS: 37.5 %). NRS patients had a higher crude in-hospital case-fatality ratio (NRS 41.1 % vs. RS 32.0 %), but a lower risk of death after adjusting for confounders (HR 0.88 [0.83-0.93]). Conclusion: Approximately one in seven COVID-19 patients presented at hospital admission without respiratory symptoms. These patients were older, had lower ICU admission rates, and had a lower risk of in-hospital mortality after adjusting for confounders

    ISARIC-COVID-19 dataset: A Prospective, Standardized, Global Dataset of Patients Hospitalized with COVID-19

    No full text
    The International Severe Acute Respiratory and Emerging Infection Consortium (ISARIC) COVID-19 dataset is one of the largest international databases of prospectively collected clinical data on people hospitalized with COVID-19. This dataset was compiled during the COVID-19 pandemic by a network of hospitals that collect data using the ISARIC-World Health Organization Clinical Characterization Protocol and data tools. The database includes data from more than 705,000 patients, collected in more than 60 countries and 1,500 centres worldwide. Patient data are available from acute hospital admissions with COVID-19 and outpatient follow-ups. The data include signs and symptoms, pre-existing comorbidities, vital signs, chronic and acute treatments, complications, dates of hospitalization and discharge, mortality, viral strains, vaccination status, and other data. Here, we present the dataset characteristics, explain its architecture and how to gain access, and provide tools to facilitate its use

    Respiratory support in patients with severe COVID-19 in the International Severe Acute Respiratory and Emerging Infection (ISARIC) COVID-19 study: a prospective, multinational, observational study

    No full text
    Background: Up to 30% of hospitalised patients with COVID-19 require advanced respiratory support, including high-flow nasal cannulas (HFNC), non-invasive mechanical ventilation (NIV), or invasive mechanical ventilation (IMV). We aimed to describe the clinical characteristics, outcomes and risk factors for failing non-invasive respiratory support in patients treated with severe COVID-19 during the first two years of the pandemic in high-income countries (HICs) and low middle-income countries (LMICs). Methods: This is a multinational, multicentre, prospective cohort study embedded in the ISARIC-WHO COVID-19 Clinical Characterisation Protocol. Patients with laboratory-confirmed SARS-CoV-2 infection who required hospital admission were recruited prospectively. Patients treated with HFNC, NIV, or IMV within the first 24 h of hospital admission were included in this study. Descriptive statistics, random forest, and logistic regression analyses were used to describe clinical characteristics and compare clinical outcomes among patients treated with the different types of advanced respiratory support. Results: A total of 66,565 patients were included in this study. Overall, 82.6% of patients were treated in HIC, and 40.6% were admitted to the hospital during the first pandemic wave. During the first 24 h after hospital admission, patients in HICs were more frequently treated with HFNC (48.0%), followed by NIV (38.6%) and IMV (13.4%). In contrast, patients admitted in lower- and middle-income countries (LMICs) were less frequently treated with HFNC (16.1%) and the majority received IMV (59.1%). The failure rate of non-invasive respiratory support (i.e. HFNC or NIV) was 15.5%, of which 71.2% were from HIC and 28.8% from LMIC. The variables most strongly associated with non-invasive ventilation failure, defined as progression to IMV, were high leukocyte counts at hospital admission (OR [95%CI]; 5.86 [4.83–7.10]), treatment in an LMIC (OR [95%CI]; 2.04 [1.97–2.11]), and tachypnoea at hospital admission (OR [95%CI]; 1.16 [1.14–1.18]). Patients who failed HFNC/NIV had a higher 28-day fatality ratio (OR [95%CI]; 1.27 [1.25–1.30]). Conclusions: In the present international cohort, the most frequently used advanced respiratory support was the HFNC. However, IMV was used more often in LMIC. Higher leucocyte count, tachypnoea, and treatment in LMIC were risk factors for HFNC/NIV failure. HFNC/NIV failure was related to worse clinical outcomes, such as 28-day mortality. Trial registration This is a prospective observational study; therefore, no health care interventions were applied to participants, and trial registration is not applicable

    Respiratory support in patients with severe COVID-19 in the International Severe Acute Respiratory and Emerging Infection (ISARIC) COVID-19 study: a prospective, multinational, observational study

    No full text
    Background: Up to 30% of hospitalised patients with COVID-19 require advanced respiratory support, including high-flow nasal cannulas (HFNC), non-invasive mechanical ventilation (NIV), or invasive mechanical ventilation (IMV). We aimed to describe the clinical characteristics, outcomes and risk factors for failing non-invasive respiratory support in patients treated with severe COVID-19 during the first two years of the pandemic in high-income countries (HICs) and low middle-income countries (LMICs). Methods: This is a multinational, multicentre, prospective cohort study embedded in the ISARIC-WHO COVID-19 Clinical Characterisation Protocol. Patients with laboratory-confirmed SARS-CoV-2 infection who required hospital admission were recruited prospectively. Patients treated with HFNC, NIV, or IMV within the first 24 h of hospital admission were included in this study. Descriptive statistics, random forest, and logistic regression analyses were used to describe clinical characteristics and compare clinical outcomes among patients treated with the different types of advanced respiratory support. Results: A total of 66,565 patients were included in this study. Overall, 82.6% of patients were treated in HIC, and 40.6% were admitted to the hospital during the first pandemic wave. During the first 24 h after hospital admission, patients in HICs were more frequently treated with HFNC (48.0%), followed by NIV (38.6%) and IMV (13.4%). In contrast, patients admitted in lower- and middle-income countries (LMICs) were less frequently treated with HFNC (16.1%) and the majority received IMV (59.1%). The failure rate of non-invasive respiratory support (i.e. HFNC or NIV) was 15.5%, of which 71.2% were from HIC and 28.8% from LMIC. The variables most strongly associated with non-invasive ventilation failure, defined as progression to IMV, were high leukocyte counts at hospital admission (OR [95%CI]; 5.86 [4.83-7.10]), treatment in an LMIC (OR [95%CI]; 2.04 [1.97-2.11]), and tachypnoea at hospital admission (OR [95%CI]; 1.16 [1.14-1.18]). Patients who failed HFNC/NIV had a higher 28-day fatality ratio (OR [95%CI]; 1.27 [1.25-1.30]). Conclusions: In the present international cohort, the most frequently used advanced respiratory support was the HFNC. However, IMV was used more often in LMIC. Higher leucocyte count, tachypnoea, and treatment in LMIC were risk factors for HFNC/NIV failure. HFNC/NIV failure was related to worse clinical outcomes, such as 28-day mortality. Trial registration This is a prospective observational study; therefore, no health care interventions were applied to participants, and trial registration is not applicable

    Respiratory support in patients with severe COVID-19 in the International Severe Acute Respiratory and Emerging Infection (ISARIC) COVID-19 study: a prospective, multinational, observational study

    No full text
    International audienceBackground: Up to 30% of hospitalised patients with COVID-19 require advanced respiratory support, including high-flow nasal cannulas (HFNC), non-invasive mechanical ventilation (NIV), or invasive mechanical ventilation (IMV). We aimed to describe the clinical characteristics, outcomes and risk factors for failing non-invasive respiratory support in patients treated with severe COVID-19 during the first two years of the pandemic in high-income countries (HICs) and low middle-income countries (LMICs).Methods: This is a multinational, multicentre, prospective cohort study embedded in the ISARIC-WHO COVID-19 Clinical Characterisation Protocol. Patients with laboratory-confirmed SARS-CoV-2 infection who required hospital admission were recruited prospectively. Patients treated with HFNC, NIV, or IMV within the first 24 h of hospital admission were included in this study. Descriptive statistics, random forest, and logistic regression analyses were used to describe clinical characteristics and compare clinical outcomes among patients treated with the different types of advanced respiratory support.Results: A total of 66,565 patients were included in this study. Overall, 82.6% of patients were treated in HIC, and 40.6% were admitted to the hospital during the first pandemic wave. During the first 24 h after hospital admission, patients in HICs were more frequently treated with HFNC (48.0%), followed by NIV (38.6%) and IMV (13.4%). In contrast, patients admitted in lower- and middle-income countries (LMICs) were less frequently treated with HFNC (16.1%) and the majority received IMV (59.1%). The failure rate of non-invasive respiratory support (i.e. HFNC or NIV) was 15.5%, of which 71.2% were from HIC and 28.8% from LMIC. The variables most strongly associated with non-invasive ventilation failure, defined as progression to IMV, were high leukocyte counts at hospital admission (OR [95%CI]; 5.86 [4.83-7.10]), treatment in an LMIC (OR [95%CI]; 2.04 [1.97-2.11]), and tachypnoea at hospital admission (OR [95%CI]; 1.16 [1.14-1.18]). Patients who failed HFNC/NIV had a higher 28-day fatality ratio (OR [95%CI]; 1.27 [1.25-1.30]).Conclusions: In the present international cohort, the most frequently used advanced respiratory support was the HFNC. However, IMV was used more often in LMIC. Higher leucocyte count, tachypnoea, and treatment in LMIC were risk factors for HFNC/NIV failure. HFNC/NIV failure was related to worse clinical outcomes, such as 28-day mortality. Trial registration This is a prospective observational study; therefore, no health care interventions were applied to participants, and trial registration is not applicable
    corecore