297 research outputs found

    Las instituciones científico-medicas en la Murcia del XVIII : un intento fracasado de renovación de la formación médica

    Get PDF
    Presentamos un estudio sobre dos intentos que, en la Murcia del siglo XVIII, pretendieron mejorar y actualizar la formación que recibían los profesionales sanitarios. Ambos fracasaron, aparentemente por falta de acuerdo entre sus promotores, si bien pensamos que las causas fueron más profundas y habría que buscarlas en la escasa actividad científica que se desarrolló en la ciudad, lo que hacía innecesaria la existencia de instituciones docentes o de otras como las Academias de Medicina

    Mechanism-based pharmacokinetic-pharmacodynamic modeling of the dopamine D-2 receptor occupancy of olanzapine in rats

    Get PDF
    A mechanism-based PK-PD model was developed to predict the time course of dopamine D-2 receptor occupancy (D2RO) in rat striatum following administration of olanzapine, an atypical antipsychotic drug. A population approach was utilized to quantify both the pharmacokinetics and pharmacodynamics of olanzapine in rats using the exposure (plasma and brain concentration) and D2RO profile obtained experimentally at various doses (0.01-40 mg/kg) administered by different routes. A two-compartment pharmacokinetic model was used to describe the plasma pharmacokinetic profile. A hybrid physiology- and mechanism-based model was developed to characterize the D-2 receptor binding in the striatum and was fitted sequentially to the data. The parameters were estimated using nonlinear mixed-effects modeling . Plasma, brain concentration profiles and time course of D2RO were well described by the model; validity of the proposed model is supported by good agreement between estimated association and dissociation rate constants and in vitro values from literature. This model includes both receptor binding kinetics and pharmacokinetics as the basis for the prediction of the D2RO in rats. Moreover, this modeling framework can be applied to scale the in vitro and preclinical information to clinical receptor occupancy

    Tetrakis(μ3-9-oxa-10-boraanthracen-10-olato)tetrakis[(diethyl ether)lithium]

    Get PDF
    The title compound, [Li4O4(C12H8BO)4(C4H10O)4], features a Li4O4 cube. Each Li atom in the cube is additionally coordinated by a diethyl ether mol­ecule and each O atom in the cube carries a 9-oxa-10-boraanthracene residue. The crystal studied was a non-merohedral twin [twin law (-1 0 0 / 0 0 1 / 0 1 0); the contribution of the major twin component refined to 0.553 (3)] emulating apparent tetra­gonal symmetry, whereas the actual crystal system is just ortho­rhom­bic

    Feedback modeling of non-esterified fatty acids in rats after nicotinic acid infusions

    Get PDF
    A feedback model was developed to describe the tolerance and oscillatory rebound seen in non-esterified fatty acid (NEFA) plasma concentrations following intravenous infusions of nicotinic acid (NiAc) to male Sprague-Dawley rats. NiAc was administered as an intravenous infusion over 30 min (0, 1, 5 or 20 μmol kg−1 of body weight) or over 300 min (0, 5, 10 or 51 μmol kg−1 of body weight), to healthy rats (n = 63), and serial arterial blood samples were taken for measurement of NiAc and NEFA plasma concentrations. Data were analyzed using nonlinear mixed effects modeling (NONMEM). The disposition of NiAc was described by a two-compartment model with endogenous turnover rate and two parallel capacity-limited elimination processes. The plasma concentration of NiAc was driving NEFA (R) turnover via an inhibitory drug-mechanism function acting on the formation of NEFA. The NEFA turnover was described by a feedback model with a moderator distributed over a series of transit compartments, where the first compartment (M1) inhibited the formation of R and the last compartment (MN) stimulated the loss of R. All processes regulating plasma NEFA concentrations were assumed to be captured by the moderator function. The potency, IC50, of NiAc was 45 nmol L−1, the fractional turnover rate kout was 0.41 L mmol−1 min−1 and the turnover rate of moderator ktol was 0.027 min−1. A lower physiological limit of NEFA was modeled as a NiAc-independent release (kcap) of NEFA into plasma and was estimated to 0.032 mmol L−1 min−1. This model can be used to provide information about factors that determine the time-course of NEFA response following different modes, rates and routes of administration of NiAc. The proposed model may also serve as a preclinical tool for analyzing and simulating drug-induced changes in plasma NEFA concentrations after treatment with NiAc or NiAc analogues

    A Flexible Nonlinear Feedback System That Captures Diverse Patterns of Adaptation and Rebound

    Get PDF
    An important approach to modeling tolerance and adaptation employs feedback mechanisms in which the response to the drug generates a counter-regulating action which affects the response. In this paper we analyze a family of nonlinear feedback models which has recently proved effective in modeling tolerance phenomena such as have been observed with SSRI’s. We use dynamical systems methods to exhibit typical properties of the response-time course of these nonlinear models, such as overshoot and rebound, establish quantitive bounds and explore how these properties depend on the system and drug parameters. Our analysis is anchored in three specific in vivo data sets which involve different levels of pharmacokinetic complexity. Initial estimates for system (kin, kout, ktol ) and drug (EC50/IC50, Emax/Imax, n ) parameters are obtained on the basis of specific properties of the response-time course, identified in the context of exploratory (graphical) data analysis. Our analysis and the application of its results to the three concrete examples demonstrates the flexibility and potential of this family of feedback models

    Modeling of prolactin response following dopamine Dreceptor antagonists in rats:can it be translated to clinical dosing?

    Get PDF
    Prolactin release is a side effect of antipsychotic therapy with dopamine antagonists, observed in rats as well as humans. We examined whether two semimechanistic models could describe prolactin response in rats and subsequently be translated to predict pituitary dopamine D2receptor occupancy and plasma prolactin concentrations in humans following administration of paliperidone or remoxipride. Data on male Wistar rats receiving single or multiple doses of risperidone, paliperidone, or remoxipride was described by two semimechanistic models, the precursor pool model and the agonist-antagonist interaction model. Using interspecies scaling approaches, human D2receptor occupancy and plasma prolactin concentrations were predicted for a range of clinical paliperidone and remoxipride doses. The predictions were compared with corresponding observations described in literature as well as with predictions from published models developed on human data. The pool model could predict D2receptor occupancy and prolactin response in humans following single doses of paliperidone and remoxipride. Tolerance of prolactin release was predicted following multiple doses. The interaction model underpredicted both D2receptor occupancy and prolactin response. Prolactin elevation may be deployed as a suitable biomarker for interspecies translation and can inform the clinical safe and effective dose range of antipsychotic drugs. While the pool model was more predictive than the interaction model, it overpredicted tolerance on multiple dosing. Shortcomings of the translations reflect the need for better mechanistic models
    corecore