46 research outputs found

    A note on the gap between rank and border rank

    Get PDF
    We study the tensor rank of a certain algebra. As a result we find a sequence of tensors with a large gap between rank and border rank, and thus a counterexample to a conjecture of Rhodes. We also obtain a new lower bound on the tensor rank of powers of the generalized W-state

    On algebraic branching programs of small width

    Get PDF

    Barriers for fast matrix multiplication from irreversibility

    Get PDF

    Quantum asymptotic spectra of graphs and non-commutative graphs, and quantum Shannon capacities

    Get PDF
    We study quantum versions of the Shannon capacity of graphs and non-commutative graphs. We introduce the asymptotic spectrum of graphs with respect to quantum homomorphisms and entanglement-assisted homomorphisms, and we introduce the asymptotic spectrum of non-commutative graphs with respect to entanglement-assisted homomorphisms. We apply Strassen's spectral theorem (J. Reine Angew. Math., 1988) and obtain dual characterizations of the corresponding Shannon capacities and asymptotic preorders in terms of their asymptotic spectra. This work extends the study of the asymptotic spectrum of graphs initiated by Zuiddam (Combinatorica, 2019) to the quantum d

    On algebraic branching programs of small width

    Get PDF
    In 1979 Valiant showed that the complexity class VP_e of families with polynomially bounded formula size is contained in the class VP_s of families that have algebraic branching programs (ABPs) of polynomially bounded size. Motivated by the problem of separating these classes we study the topological closure VP_e-bar, i.e. the class of polynomials that can be approximated arbitrarily closely by polynomials in VP_e. We describe VP_e-bar with a strikingly simple complete polynomial (in characteristic different from 2) whose recursive definition is similar to the Fibonacci numbers. Further understanding this polynomial seems to be a promising route to new formula lower bounds. Our methods are rooted in the study of ABPs of small constant width. In 1992 Ben-Or and Cleve showed that formula size is polynomially equivalent to width-3 ABP size. We extend their result (in characteristic different from 2) by showing that approximate formula size is polynomially equivalent to approximate width-2 ABP size. This is surprising because in 2011 Allender and Wang gave explicit polynomials that cannot be computed by width-2 ABPs at all! The details of our construction lead to the aforementioned characterization of VP_e-bar. As a natural continuation of this work we prove that the class VNP can be described as the class of families that admit a hypercube summation of polynomially bounded dimension over a product of polynomially many affine linear forms. This gives the first separations of algebraic complexity classes from their nondeterministic analogs
    corecore