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Abstract
We study nondeterministic multiparty quantum communication with a quantum generalization of
broadcasts. We show that, with number-in-hand classical inputs, the communication complexity
of a Boolean function in this communication model equals the logarithm of the support rank of the
corresponding tensor, whereas the approximation complexity in this model equals the logarithm
of the border support rank. This characterisation allows us to prove a log-rank conjecture posed
by Villagra et al. for nondeterministic multiparty quantum communication with message passing.

The support rank characterization of the communication model connects quantum commu-
nication complexity intimately to the theory of asymptotic entanglement transformation and
algebraic complexity theory. In this context, we introduce the graphwise equality problem. For a
cycle graph, the complexity of this communication problem is closely related to the complexity
of the computational problem of multiplying matrices, or more precisely, it equals the logarithm
of the support rank of the iterated matrix multiplication tensor. We employ Strassen’s laser
method to show that asymptotically there exist nontrivial protocols for every odd-player cyclic
equality problem. We exhibit an efficient protocol for the 5-player problem for small inputs, and
we show how Young flattenings yield nontrivial complexity lower bounds.
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1 Introduction

Let f : X × Y × Z → {0, 1} be a function on a product of finite sets X, Y and Z. Alice,
Bob and Charlie have to compute f in the following sense. Alice receives an x ∈ X, Bob
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24:2 Nondeterministic Quantum Communication Complexity

receives a y ∈ Y and Charlie receives a z ∈ Z, and each player receives a private random bit
string. Then the players communicate in rounds. Each round, one player communicates by
broadcasting a bit to the other players. After these rounds of communication, each player
has to output a bit, such that if f(x, y, z) = 1, then with some nonzero probability all players
output 1 and if f(x, y, z) = 0, then with probability zero all players output 1. The complexity
of such a protocol is the number of broadcasts in the protocol, and we denote the minimum
complexity of all such protocols by N(f).

Now we allow the players to be quantum, as follows. Alice receives an x ∈ X, Bob receives
a y ∈ Y and Charlie receives a z ∈ Z. Then, the players communicate by creating a GHZ
state of rank r

|GHZr〉 = 1√
r
(|111〉+ |222〉+ · · ·+ |rrr〉).

and sharing this state among each other, a quantum broadcast. Next, the players do local
quantum operations. Finally, each player has to output a bit, such that if f(x, y, z) = 1, then
with some nonzero probability all players output 1 and if f(x, y, z) = 0, then with probability
zero all players output 1. The quantum complexity of such a quantum protocol is log2 r, and
we denote the minimum complexity of all quantum protocols by NQ(f). We will make this
definition more precise and more general in Section 2. Note that the quantum model can
simulate the classical model by a postselection procedure. Also note that, nondeterministically,
one quantum broadcast can be used to send a qubit from one player to another by using
teleportation (see Theorem 8); the quantum model can thus simulate a message-passing
model. The classical and quantum communication model naturally extend to k players.

1.1 Our results
Our main technical result is that the quantum complexity of a function in the above model
equals the logarithm of the so-called support rank of the tensor

∑
x,y,z f(x, y, z) |x〉|y〉|z〉

corresponding to f . We prove this in Section 2.
Modifying the quantum model such that the players can only communicate by message
passing and there is no shared |GHZr〉 at the start – that is, the players now communicate
in rounds and in each communication round one player sends a qubit to one other player
– increases the complexity by at most a factor k − 1 (with k the number of players), and
this relationship is tight. However, asymptotically in the input size, the increase is only
k/2 and this relationship is tight. This solves a nondeterministic multiplayer quantum
log-rank conjecture in the message-passing model of Villagra et al. [19]. This topic is
covered in Section 3.
We define the k-player graphwise equality problem to be the problem in which k players
are identified with vertices in a graph G, and each player has to compute the equality
function with his neighbours in G. Of particular interest is the cycle graph G = Ck and
the corresponding cyclic equality problem. For this cyclic equality problem, in the classical
broadcast model, the naïve protocol in which every player broadcasts his inputs is the
optimal protocol. The same holds in the quantum model when k is even. Interestingly,
we show with Strassen’s laser method that for all odd k ≥ 3 there is a nontrivial quantum
protocol. Moreover, for all odd k ≥ 3 we give nontrivial lower bounds on the value of
NQ by use of Young flattenings. These results are related to the complexity of matrix
multiplication and iterated matrix multiplication. In particular, we improve a lower
bound of Ikenmeyer on the border support rank of IMM3

n [11, 8.2.17]. A consequence of
our work is that finding new protocols for the cyclic equality problem for three players
yields new algorithms for matrix multiplication. Section 4 covers the classical case, the
even quantum case, an explicit quantum protocol for k = 5, and the Young flattening
lower bound. Section 5 covers the Strassen laser method.
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1.2 Related work
The two-player nondeterministic quantum communication model was introduced by De
Wolf [21]. He shows that the communication complexity in this model is characterized by the
logarithm of the support rank of the communication matrix. The quantum broadcast channel,
a communication model that is very similar to ours, has been studied by e.g. Ambainis et al. [1].
Multiparty nondeterministic quantum communication with message passing has been studied
by Villagra et al. [19]. They show that the logarithm of the support rank of the communication
tensor is a lower bound for the message-passing complexity and conjecture that this lower
bound is polynomially related to the message-passing complexity.

The support rank of 3-tensors has been studied by Cohn and Umans in the context of the
complexity of matrix multiplication [9]. They give nontrivial upper bounds on the support
rank of the matrix multiplication tensor that do not come from upper bounds on the tensor
rank. As an interesting fact, we note that given a matrix A and a number k, deciding whether
the support rank of A is at least k is NP-hard [3].

The complexity of matrix multiplication plays a central role in algebraic complexity theory.
We refer to [6] for general background information. Connections between algebraic complexity
theory and entanglement transformations have been studied before, see for example [7]. The
iterated matrix multiplication tensor has been studied in the context of arithmetic circuit
complexity and the VP versus VNP problem, see for example [10]. To the knowledge of the
authors, the tensor rank or support rank of the iterated matrix multiplication tensor has not
been studied before.

Our work has motivated the further investigation of the tensor rank tensors defined by
cycle graphs and more general graphs [8], which in turn when used in conjunction with this
paper, lead to improved bounds on the non-deterministic quantum communication complexity
of the cyclic equality game and more generally equality games played on graphs.

2 Support rank characterization of the quantum broadcast model

We refer to Nielsen and Chuang [15] for background information on the quantum computation
model.

Quantum multiparty communication protocol. For any natural number m, denote by
[m] the set {1, 2, . . . ,m}. Let k be a positive integer and let f be a Boolean function on
[2n]k = [2n]× [2n]× · · · × [2n],

f : [2n]k → {0, 1}.

We define a k-player quantum communication protocol as follows. Each player i has a
finite-dimensional Hilbert space Hi. The protocol thus takes place in the space H1⊗· · ·⊗Hk.
The space is initialised in the state |x1 · · ·xk〉 |GHZkr 〉, where

|GHZkr 〉 :=
r∑
a=1
|a〉|a〉 · · · |a〉 ∈ (Cr)⊗k

is the k-party GHZ-state of rank r, shared among the k players, and xi ∈ [2n] is the classical
input to player i. (For clarity we will suppress any normalizations in quantum states when
possible.) The players now apply local quantum operations. Let Ri be the first qubit of Hi

and let R = R1 ⊗ · · · ⊗Rk. We apply a projection onto |11 · · · 1〉 in R. If the resulting tensor
is 0 then the output of the protocol is 0, otherwise the output of the protocol is 1. The

ITCS 2017



24:4 Nondeterministic Quantum Communication Complexity

complexity of the protocol is log2(r). We say the protocol nondeterministically computes f if
the probability that the output equals 1 is nonzero if f(x1, . . . , xk) = 1 and the probability
that the output equals 0 is one if f(x1, . . . , xk) = 0.

I Definition 1. Let k be a positive integer and let f be a function [2n]k → {0, 1}. The
k-player nondeterministic quantum communication complexity of f is the minimal complexity
of a k-player quantum communication protocol that nondeterministically computes f , and is
denoted by NQ(f).

Approximating protocols. Let f be a function [2n]k → {0, 1}. Let (Πj)j∈N be a sequence
of protocols, such that when f(x1, . . . , xk) = 1, the probability that Πj outputs 1 on input
x converges to a nonzero number as j goes to infinity, and when f(x1, . . . , xk) = 0, the
probability that Πj outputs 0 on input x converges to 1 as j goes to infinity. Then we say
that the sequence (Πj)j∈N approximately nondeterministically computes f . The complexity
of an approximating sequence is the maximum complexity of any protocol Πj in the sequence.

IDefinition 2. The k-player approximate nondeterministic quantum communication complex-
ity of f is the minimal complexity of a sequence (Πj) that approximately nondeterministically
computes f , and is denoted by NQ(f).

Classical protocol. We define a k-player classical communication protocol as follows. Each
player receives a classical input and a private random bit string. The protocol proceeds in
rounds. Each round we let a single predetermined player communicate by broadcasting a bit
to all the other players. After the last communication round, every player presents an output
bit. If all the output bits are 1, then the output of the protocol is 1; otherwise the output of
the protocol is 0. Again, we say the classical protocol nondeterministically computes f if the
probability that the output equals 1 is nonzero if f(x1, . . . , xk) = 1 and the probability that
the output equals 0 is one if f(x1, . . . , xk) = 0.

I Definition 3. The k-player nondeterministic classical communication complexity of f is the
minimal complexity of a k-player classical communication protocol that nondeterministically
computes f , and is denoted by N(f).

I Remark. For simplicity, we have taken the input set for each of the k players to be the
same set [2n]. We note that the definitions in this section and most of the results in this
paper naturally generalize to the situation where the players get inputs from sets of different
sizes.

Support rank and border support rank. Let t be a tensor in (Cm)⊗k. The tensor rank of
t is the smallest number r such that t can be written as a sum of r simple tensors, that is,
t =

∑r
i=1 u

1
i ⊗ u2

i ⊗ · · · ⊗ uki for some vectors uji ∈ Cm. We denote the tensor rank of t by
R(t). Let |1〉 , . . . , |m〉 be the standard basis for Cm and define the support of a tensor t
in (Cm)⊗k to be the set of product basis elements |i1〉 ⊗ · · · ⊗ |ik〉 that occur with nonzero
coefficient in t. The support rank or nondeterministic rank of t is the smallest number r such
that there exists a tensor in the space (Cm)⊗k with the same support as t and tensor rank r.
We denote the support rank of t by Rs(t). Note that support rank is basis dependent.

The border rank of t is the smallest number r such that there exists a sequence of tensors
(tj)j∈N converging to t in the Euclidean topology (or equivalently in the Zariski topology)
such that R(tj) is at most r for every j. We denote the border rank of t by R(t). The border
support rank of t is the smallest number r such that there exists a tensor in (Cm)⊗k with
the same support as t and border rank r. We denote the border support rank of t by Rs(t).
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I Theorem 4. Let f : [2n]k → {0, 1} be a function and let t be the tensor in (C2n)⊗k with
entries given by f , that is, t =

∑
i∈[2n]k f(i) |i1〉|i2〉 · · · |ik〉. Then NQ(f) = log2 Rs(t) and

NQ(f) = log2 Rs(t).

I Lemma 5 (Cleanup lemma). Let {|ψi〉 : i ∈ [q]} ⊆ (Cm)⊗k be a set of k-tensors, for some
natural number q. Then there exists a k-partite rank-1 linear map 〈`| := 〈`1| ⊗ · · · ⊗ 〈`k| with
〈`j | ∈ (Cm)∗ such that 〈`|ψi〉 6= 0 for every i ∈ [q].

Proof. We will give a proof by recursively constructing 〈`|. Let Id be the identity map on
Cm. If j ≤ k, 〈a| ∈ ((Cm)∗)⊗j and |b〉 ∈ (Cm)⊗k, then we denote by 〈a|b〉 the contraction
of 〈a| and |b〉, that is, 〈a|b〉 = (〈a| ⊗ Id⊗k−j) |b〉.

The base case is 〈`| = 1. For the recursion, suppose we are given an element 〈`′| ∈
((Cm)∗)⊗j such that |φi〉 := 〈`′|ψi〉 is nonzero for every i ∈ [q]. We will construct an element
〈`| ∈ ((Cm)∗)⊗j+1 such that 〈`|ψi〉 is nonzero for every i ∈ [q]. Since |φi〉 is nonzero for
every i ∈ [q], there is an element 〈ui| ∈ (Cm)∗ such that 〈ui|φi〉 is nonzero. Consider the the
maps (〈u1|+ x 〈u2|) |φi〉 for i ∈ {1, 2}, in the variable x. Each map only has a single root.
Therefore, there exists a value α2 for x such that both maps evaluate to a nonzero number.
Next, consider the maps (〈u1|+ α2 〈u2|+ x 〈u3|) |φi〉 for i ∈ {1, 2, 3}, in variable x. Again,
each of the three maps has only a single root. Therefore, there exists a value α3 for x such
that all three maps evaluate to a nonzero number. Repeat this construction to obtain an
element 〈u| ∈ (Cm)∗ such that 〈u|φi〉 is nonzero for every i ∈ [q]. Let 〈`| be 〈`′| ⊗ 〈u|. J

Proof of Theorem 4. We first show NQ(f) ≤ log2 Rs(t). Let r be the support rank of t.
Then there exists a unit vector ψ ∈ (C2n)⊗k with rank r and support equal to the support
of f . This means that there are vectors |uji 〉 ∈ C2n such that ψ =

∑r
i=1 |u1

i 〉 · · · |uki 〉. For
every player j define a matrix

Aj := αj

r∑
i=1
|uji 〉〈i|

where αj is a nonzero complex number such that A†jAj has eigenvalue at most 1. The
matrix I −A†jAj is thus positive semidefinite and hence there exists a matrix A′j such that
A′j
†
A′j = I −A†jAj . Define for every player j a quantum operation

Ej : ρ 7→ AjρA
†
j ⊗ |1〉〈1|+A′jρA

′
j
† ⊗ |0〉〈0| .

Note that this operation introduces a new control qubit register which player j can measure
to see whether he applied Aj or A′j .

The protocol for the k players is as follows. Let x1, . . . , xk be the inputs given to the
players. The players share a k-party GHZ-state of rank r. Player j applies Ej to his part of
the GHZ-state. If his control qubit is |0〉 then he sets his output qubit Ri to |0〉. Otherwise,
he measures the rest of the system. If the outcome equals |xj〉, then he sets Rj to |1〉,
otherwise he sets Rj to |0〉.

The above protocol uses a GHZ-state of rank r, so it has complexity log2(r). We claim
that the protocol nondeterministically computes f . If the players in the first measurement
each get outcome |1〉, then the state of the total system is |ψ〉. Because |ψ〉 has norm 1, this
happens with nonzero probability |α1|2 · · ·|αk|2. If f(x1, . . . , xk) = 0, then |x1 · · ·xk〉 does
not occur in the support of ψ, so the probability that the players measure |x1〉 , . . . , |xk〉
respectively is zero. Hence in this case the register R is not in state |11 · · · 1〉. On the
other hand, if f(x1, . . . , xk) 6= 0, then |x1 · · ·xk〉 does occur in the support of ψ, so the
probability that the players measure |x1〉 , . . . , |xk〉 respectively is nonzero. Hence with
nonzero probability the register R is in state |11 · · · 1〉.

ITCS 2017



24:6 Nondeterministic Quantum Communication Complexity

We now show NQ(f) ≥ log2 Rs(t). Suppose we have a protocol that nondeterministically
computes f with complexity r. This means that the players perform local quantum operations
that together form a linear map L which transforms, for any x1, . . . , xk ∈ [2n], the state

|x1 · · ·xk〉 |GHZr〉
to a state of the form
|x1 · · ·xk〉

∑
a∈{0,1}k

|ψax〉 |a1〉|a2〉 · · · |ak〉 ,

where |ψax〉 is some vector representing the state of the work space of the players. By definition
of nondeterministic computation, for a = (1, . . . , 1), if f(x1, . . . , xk) = 1, then |ψax〉 is nonzero,
and if f(x1, . . . , xk) = 0, then |ψax〉 is zero. Since the map L is linear, it maps the tensor

s1 :=
∑

x1,...,xk

|x1 · · ·xk〉 |GHZr〉

to the tensor
s2 :=

∑
x1,...,xk

|x1 · · ·xk〉
∑

a∈{0,1}k
|ψax〉 |a1 · · · ak〉 .

The tensor rank of
∑
x |x1 · · ·xk〉 is 1 and hence the tensor rank of s1 is r. Because L is a

local map, the tensor rank of s2 is at most r. By applying the cleanup lemma (Lemma 5)
and projecting on states with |a1 · · · ak〉 = |1 · · · 1〉, we obtain a tensor

s3 :=
∑

x1,...,xk

|x1 · · ·xk〉 cx

where cx ∈ C is zero if f(x) = 0 and nonzero if f(x) = 1. The rank of the tensor s3 is at
most r. The support of s3 equals the support of f , so the support rank of f is at most r.

The statement about the approximate complexity of f follows from the definition of
border support rank. J

I Definition 6 (SLOCC). Let φ ∈ U1 ⊗ · · · ⊗ Uk and let ψ ∈ V1 ⊗ · · · ⊗ Vk. We say that φ
can be converted to ψ by stochastic local operations and classical communication (SLOCC),
and write φ SLOCC−−−−−→ ψ, if there exist matrices A1, . . . , Ak such that ψ = (A1 ⊗ · · · ⊗Ak)φ.

I Remark. We note that having an NQ-protocol for f of complexity n is the same as having
an SLOCC protocol for transforming GHZk2n to a tensor with the same support as f . We
will use the SLOCC paradigm in some parts of the text.
I Remark. The NQ-model that we are using is very similar to the following broadcast channel
model that was studied in [1]. Each player i has a local Hilbert space Hi with a register
initialised in the input state |xi〉. The players have access to a quantum broadcast channel,
which, given a qubit state α |0〉+ β |1〉, will create the state α |0〉⊗k + β |1〉⊗k and distribute
this state among the k players. The players proceed in communication rounds; each round
a designated player uses the broadcast channel. Let Ri be the first qubit of Hi and let
R = R1⊗ · · ·⊗Rk. After the communication is finished, we apply a projection onto |11 · · · 1〉
in R. If the resulting tensor is 0 then the output of the protocol is 0, otherwise the output of
the protocol is 1. The complexity of the protocol is the number of communication rounds.
We say the protocol nondeterministically computes f if the probability that the output
equals 1 is nonzero if f(x1, . . . , xk) = 1 and the probability that the output equals 0 is one if
f(x1, . . . , xk) = 0.



H. Buhrman, M. Christandl and J. Zuiddam 24:7

In particular, let NQ′(f) denote the complexity of the function f in the broadcast channel
model. Then NQ′(f) ≤ NQ(f) + 1. Indeed, consider a protocol in the NQ-model that
computes f using |GHZkr 〉 as a starting state. To simulate this protocol in the NQ′-model,
one of the players uses the broadcast channel dlog2 re times to create |GHZkr 〉. Then the
players proceed with the local quantum operations to compute f . This finishes the proof.
We don’t know whether the inequality NQ(f) ≤ NQ′(f) holds.

3 Nondeterministic log-rank conjecture for message-passing protocols

IDefinition 7. Let NQ0(f) be the minimal complexity of a protocol that nondeterministically
computes f , without preshared entanglement (that is, the space is initialised in the state
|x1 · · ·xk〉 instead of |x1 · · ·xk〉 |GHZkr 〉) but with the added ability for every player to send a
qubit to another player. This communication happens in communication rounds; the protocol
specifies per round who communicates to whom, independently of the input. The complexity
of such a protocol is the total number rounds.

Villagra et al. [19] show that NQ0(f) is at least the logarithm of the support rank of f .
They furthermore conjecture that NQ0(f) is upper bounded by a polynomial in the logarithm
of the support rank. The following theorem proves this conjecture.

I Theorem 8 (“Nondeterministic log-rank conjecture”). Let f : [2n]k → {0, 1}. Then we have
NQ(f) ≤ NQ0(f) ≤ (k − 1) NQ(f).

Proof. For the first inequality, suppose we have an NQ0-protocol for f . We replace the
communication of a qubit by the nondeterministic teleportation of that qubit. Beforehand,
all players agree on the basis in which the teleportation should happen. If any teleportation
during the protocol does not happen in this basis, then the player that notices this sets his
output register Ri to |0〉.

For the second inequality, suppose we have an NQ-protocol for f which uses a GHZ-state
of rank r. Then we can construct a NQ0-protocol for f as follows. The players start with no
shared entanglement. Player 1 constructs a GHZ-state of rank r locally. In the first k − 1
communication rounds, player 1 distributes the GHZ-state over the other k− 1 players. After
that, the players perform the NQ-protocol. The resulting NQ0-protocol has complexity at
most (k − 1) NQ(f). J

To say something about the ‘tightness’ of Theorem 8 we consider the natural easy function
in the NQ-model, namely f(x1, . . . , xk) = [x1 = x2 = · · · = xk] with xi ∈ [2n].

I Proposition 9 (Single bit inputs). Let f : [2]k → {0, 1} be the function defined by
f(x1, . . . , xk) = [x1 = x2 = · · · = xk] for xi ∈ [2]. Then we have NQ(f) = 1 and
NQ0(f) = (k − 1) NQ(f).

Proof. Note that the tensor of this function is GHZk2 , so NQ(f) = 1. Now consider a
protocol that nondeterministically computes f without preshared entanglement and r rounds
of communication. We may assume, without loss of generality, that the protocol consists
of a first phase in which the players communicate and a second phase in which the players
only do local quantum operations. After the first phase the players are sharing some state E
consisting of EPR-pairs shared among certain pairs of the players. We thus obtain a local
linear map which maps

∑
x |x〉E to a tensor with the same support as GHZk2 . However, if

r < k − 1, then, viewing E as a graph, E is disconnected. Therefore there is a grouping of
the players into two groups such that there are no EPR-pairs between the groups. Such a
state cannot be converted to a GHZk2 state by SLOCC. J

ITCS 2017
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Asymptotically, we can improve the relationship stated in Theorem 8, as follows.

I Theorem 10 (Asymptotic upper bound). For any ε > 0, there is an n0 such that for all
f : [m]k → {0, 1}, if NQ(f) > n0, then

NQ0(f) ≤ (k + ε)
2 NQ(f).

To prove Theorem 10 we use the theory of asymptotic SLOCC conversion rates.

I Definition 11. Given tensors ψ ∈ V1 ⊗ · · · ⊗ Vk and φ ∈ W1 ⊗ · · · ⊗Wk, we say that
ψ can be transformed into φ via SLOCC operations, if there exist linear transformations
Ai : Vi →Wi such that φ = (A1 ⊗ · · · ⊗Ak)ψ; and we write ψ SLOCC−−−−−→ φ. Define

ωn(ψ, φ) = 1
n

inf{m ∈ N≥1 | ψ⊗m
SLOCC−−−−−→ φ⊗n}

and
ω(ψ, φ) = lim

n→∞
ωn(ψ, φ).

I Lemma 12. The limit ω(ψ, φ) exists and for all n the inequality ωn(ψ, φ) ≥ ω(ψ, φ) holds;
in other words, ωn = ω + o(1).

I Theorem 13 (Vrana-Christandl [20]). Let GHZKk2 be the k-party tensor consisting of
EPR-pairs between any parties. Then

ω(GHZKk2 ,GHZk2) = 1
k − 1 .

In other words, for any ε > 0, there is an n0 such that for all n > n0,

(GHZKk2 )⊗n( 1
k−1 +ε) SLOCC−−−−−→ (GHZk2)⊗n.

Proof of Theorem 10. Creating GHZKk2 in the NQ0-model costs
(
k
2
)
messages. Asymp-

totically, we can transform 1/(k − 1) copies of GHZKk2 to one copy of GHZk2 by SLOCC.
More precisely, by Theorem 13, for any ε > 0, there is an n0 such that for all n > n0,

(GHZKk2 )⊗
n
k−1 +εn SLOCC−−−−−→ (GHZk2)⊗n.

We conclude that, for any ε > 0, there is an n0 such that for all n > n0,
(
k
2
)
( n
k−1 + εn) =

((k + ε′)n)/2 messages are sufficient to generate (GHZk2)⊗n by SLOCC.
To prove the theorem, suppose we have an NQ-protocol for f which uses a GHZ state of

rank 2n and no communication. Consider the following NQ0-protocol for f . Create a GHZ-
state of rank 2n by sending (k+ε′)n

2 messages and then continue with the NQ-protocol. J

The following proposition says that the asymptotic relationship of Theorem 10 is tight.

I Proposition 14 (n-bit inputs). Let f : [2n]k → {0, 1} be the function defined by
f(x1, . . . , xk) = [x1 = x2 = · · · = xk] for xi ∈ [2n]. Then we have NQ(f) = n and
NQ0(f) ≥ k

2 NQ(f).

Proof. As in the previous proof, note that the tensor corresponding to f is GHZk2n . Suppose
there is an NQ0 protocol using r messages. View the communication pattern of this protocol
as an undirected multigraph G (i.e. parallel edges are allowed) on k vertices. Note that G has
r edges. Let E = GHZG2 be the tensor that has an EPR pair at every edge in G. The protocol
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yields an SLOCC transformation of E to GHZk2n . Let ` be the minimal number of edges
across any cut of G. Then ` is at most the minimal degree d of G. The sum of all degrees in
G equals 2r, so k` ≤ kd ≤ 2r, which implies the inequality r ≥ k`/2. The number ` is equal
to minS⊆[k] log2 rkS(E), where rkS(E) denotes the rank of E after flattening according to
the set S. This value cannot increase under any SLOCC transformation. Now note that
log2 rk{i}(GHZk2n) = n for any i ∈ [k], so ` ≥ n. We conclude that r ≥ kn/2. J

I Remark. Another way to prove Proposition 14 is to first symmetrize the protocol to obtain
an SLOCC transformation of a state E with log2 rk{i}(E) = (k − 1)!2r to the state GHZk2k!n .
We have log2 rk{i}(GHZk2k!n) = k!n. Since log2 rk{i} is an SLOCC-monotone, we obtain the
inequality (k − 1)! 2r ≥ k!n and hence r ≥ kn/2.

4 Cyclic equality problem

The two-player equality problem EQn is the problem of Alice and Bob having to decide
whether their n-bit inputs are equal. Since the identity matrix has full support rank, we have
NQ(EQn) = n. We generalize EQn to multiple players as follows. Let G be an undirected
graph. Let EQG

n be the problem of |G| players having to solve the n-bit equality problem
between players connected by edges. (Note that this definition naturally generalizes to
hypergraphs.) If G is a bipartite graph, one easily sees that by grouping the players we can
transform the problem into an equality problem on en bits EQen, where e is the number of
edges in the graph. Therefore NQ(EQG

n ) = en, that is, the trivial protocol is optimal for
bipartite graphs. On the other hand, if G contains an odd cycle, then this argument fails.
In the rest of this paper we will focus on the extreme case of G being an odd cycle and
investigate the complexity of the corresponding equality problem.

I Definition 15. The k-player cyclic equality problem on n bits EQCk
n is the function

EQCk
n : ([2n]× [2n])k → {0, 1} : (a1b1, . . . , akbk) 7→

1 if b1 = a2, b2 = a3, . . . , bk = a1

0 otherwise,

that is, the players are arranged in a circle; player i receives two n-bit inputs ai, bi and has
to decide whether ai = bi−1 and bi = ai+1, where the indices are taken modulo k.

It turns out that the tensor corresponding to this function is a generalisation of the matrix
multiplication tensor, one of the central objects of study in algebraic complexity theory. This
tensor arises as follows in algebraic complexity theory. Consider the bilinear map

Cm×m ×Cm×m → Cm×m : (A,B) 7→ AB

which multiplies two complex m×m matrices. Any bilinear map U × V →W corresponds
canonically to a tensor in U ⊗V ⊗W . The number of multiplications in the field C necessary
to perform the bilinear map is equal to the tensor rank of the corresponding tensor, up to a
factor 2. The tensor corresponding to the matrix multiplication map is

〈m,m,m〉 :=
∑

x∈[m]3

|x1x2〉|x2x3〉|x3x1〉 .

A natural generalisation of the tensor 〈m,m,m〉 to a k-party tensor is the so-called iterated
matrix multiplication tensor

IMMk
m :=

∑
x∈[m]k

|x1x2〉|x2x3〉 · · · |xkx1〉 .

ITCS 2017
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Clearly, IMM3
m = 〈m,m,m〉. The tensor IMMk

m corresponds to the multilinear map

(Cm×m)×k → C : (A1, A2, . . . , Ak) 7→ tr(A1A2 · · ·Ak)

which computes the trace of the product of k matrices. We note that, when viewed as a
polynomial in the matrix entries, IMMk

m plays a special role in the field of arithmetic circuits
and geometric complexity theory. Namely, IMMk

3 is complete for the class VPe of families
of polynomials computable by small formulas [2], and IMMk

k is complete for the class VQP,
for which the determinant is also complete [4]. The following connection between iterated
matrix multiplication and cyclic equality is readily observed.

I Proposition 16. The tensor corresponding to the cyclic equality function EQCk
n on n bits

is the iterated matrix multiplication tensor IMMk
2n with 2n× 2n matrices. Therefore, we have

the equalities NQ(EQCk
n ) = log2 Rs(IMMk

2n) and NQ(EQCk
n ) = log2 Rs(IMMk

2n)

The remainder of this paper is organized as follows. In the following four paragraphs we
do the following: (1) we show that in the classical model, the naïve protocol in which every
player broadcasts his input is optimal; (2) we show that when k is even the naïve protocol is
optimal quantumly; (3) we exhibit nontrivial protocols when n = 1 and k = 3 or k = 5; (4)
we show nontrivial lower bounds on the quantum complexity by use of Young flattenings.
Finally, in the last section, we show that the Strassen laser method yields nontrivial protocols
for all odd k ≥ 3, asymptotically.

Classical lower bound with the fooling set method. We will show that in the classical
situation the trivial protocol is always optimal. To prove a lower bound on the classical
complexity of the cyclic equality problem we use the fooling set method. This is a method
from the 2-player setting that extends naturally to the k-player setting.

I Theorem 17. The classical nondeterministic communication complexity N(EQCk
n ) of the

cyclic equality problem equals kn.

Proof. Let S ⊆ [22n]k be the set of 1-inputs of the function EQCk
n . This set has size 2kn. Let

Π be a classical protocol for EQCk
n and denote by Πr(x1, . . . , xk) the sequence of messages

sent by the players in the protocol Π on input x ∈ [22n]k and private randomness r ∈
[m]k. Suppose there are distinct 1-inputs x, y ∈ S and private randomnesses r, s ∈ [m]k
such that Πr(x1, . . . , xk) = Πs(y1, . . . , yk). There is an i such that xi 6= yi, say i =
1. We have Πr(x1, . . . , xk) = Π(r1,s2,...,sk)(x1, y2, . . . , yk), so the protocol outputs 1 on
input x1, y2, . . . , yk with randomness (r1, s2, . . . , sk). However, x1, y2, . . . , yk is a 0-input, a
contradiction. Therefore, Πr(x1, . . . , xk) 6= Πs(y1, . . . , yk). We conclude that N(EQCk

n ) ≥
log2(|S|). J

An even number of quantum players. When k is even, the cycle graph Ck is bipartite,
and, as mentioned above, the best protocol for an equality problem on a bipartite graph
is the trivial protocol. We record this statement in terms of border support rank in the
following proposition.

I Proposition 18. For even k, mk ≤ Rs(IMMk
m). As a consequence, we have the equalities

NQ(EQCk
n ) = NQ(EQCk

n ) = kn.

Proof. Let t be a tensor with the same support as IMMk
m ∈ (Cm2)⊗k. Label the players

with the numbers 1, 2, . . . , k. Group the even players together and group the odd players
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together and flatten the tensor t accordingly into a matrix A in (Cm2)⊗k/2 ⊗ (Cm2)⊗k/2.
The matrix A has the same support as the identity matrix in (Cm2)⊗k/2 ⊗ (Cm2)⊗k/2 and
thus has rank mk. J

Note that for odd k the above proof yields the lower bound mk−1 ≤ Rs(IMMk
m). We will

show in Theorem 20 that this lower bound is not tight.

Nontrivial 3-player and 5-player quantum protocols. In the 3-player situation, Strassen’s
celebrated decomposition of the tensor IMM3

2 = 〈2, 2, 2〉 into a sum of 7 simple tensors [17]
gives a nontrivial protocol for EQC3

1 , and thus NQ(EQC3
1 ) ≤ log2(7). We show that for 5

players there also exists a nontrivial protocol for EQC5
1 , as follows. Recall that we have defined

IMM5
2 =

∑
i∈[2]5 |i1i2〉|i2i3〉|i3i4〉|i4i5〉|i5i1〉. Observe that an upper bound R(IMM5

2) ≤ r

implies R(IMM5
n) ≤ O(nlog2(r)) by taking tensor powers of IMM5

2.

I Theorem 19. R(IMM5
2) ≤ 31, and thus NQ(EQC5

1 ) ≤ log2(31).

Proof. Let |−〉 := |1〉 − |2〉, |+〉 := |1〉+ |2〉 and |Φ+〉 = |11〉+ |22〉. Let Cyc5 :=
∑
σ∈C5

σ

be the cyclic symmetrizer acting on (C4)⊗5 by permuting the 5 parties, and moreover let
Sym2 :=

∑
σ∈S2

σ be a ‘local symmetrizer’ acting diagonally on (C2)⊗10 by permuting the
basis states |1〉 and |2〉 of each C2. Let

t := − |−1〉 |11〉 |11〉 |1+〉 |22〉
− |−1〉 |12〉 |21〉 |1+〉 |22〉
− |Φ+〉 |22〉 |−1〉|1+〉 |22〉.

By direct computation, we see that IMM5
2 = Cyc5

(
Sym2(t)

)
+ |Φ+〉⊗5. We observe that the

right hand side yields a sum of 31 simple tensors. J

We have a proof generalizing Theorem 19 to R(IMMk
2) ≤ 2k − 1 for all odd k, which will

appear in a forthcoming paper [8].

Quantum lower bound with Young flattenings. Let t ∈ V1 ⊗ V2 ⊗ V3 be some 3-tensor.
By grouping V1 and V2, the tensor t can be viewed as a matrix A ∈ (V1 ⊗ V2)⊗ V3; this is
called a flattening. The rank of the flattening A is a lower bound for the border rank of t and
thus we obtain lower bounds on the border rank of tensors by computing the rank of their
flattenings. However, this type of lower bound can never be bigger than the dimension of any
local space Vi, and there do exist tensors with border rank larger than the local dimensions,
for example the matrix multiplication tensor 〈2, 2, 2〉.

One approach to overcome this ‘local dimension limitation’ is as follows. We let
φ : V2 →W1 ⊗W2 be a linear map such that R(φ(v)) ≤ e for all v ∈ V2. By applying φ to
the central tensor leg of t, we transform t into a 4-tensor s ∈ V1 ⊗W1 ⊗W2 ⊗ V3. Next, we
flatten s to a matrix A ∈ (V1 ⊗W1) ⊗ (W2 ⊗ V3). The rank of A divided by e is a lower
bound for the border rank of t. We will be using a specific linear map φ which originates from
the representation theory of the general linear group. When one takes such representation
theoretic maps φ to construct a flattening as above one speaks of a Young flattening [13].
An early appearance of this type of flattening can be recognized in the work of Strassen [18].
The following lower bound is obtained with a Young flattening.

I Theorem 20. For odd k ≥ 3, (2n2 − n)nk−3 ≤ Rs(IMMk
n). As a consequence, we have

the lower bound (k − 1)n+ log2(2− 1
n ) ≤ NQ(EQCk

n ).
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Proof. Let k = 3. The proof for odd k > 3 goes similarly after having grouped the k parties
appropriately to 3 parties. For a vector space V , let ∧aV be the ath exterior power of V .
Define the linear map

φ : C2n−1 → ∧pC2n−1 ⊗ ∧p+1C2n−1

|j〉 7→
∑

j1<···<jp

|j1〉∧· · ·∧|jp〉 ⊗ |j1〉∧· · ·∧|jp〉∧|j〉 ,

and note that the rank of the matrix φ(v) equals
(2n−2

p

)
for any v ∈ C2n−1. We consider the

tensor

t1 :=
∑
i

αi1,i2,i3 |i1i2〉 |i2i3〉 |i3i1〉 ∈ Cn2
⊗Cn2

⊗Cn2
,

where i runs over [n]3 and the αi1,i2,i3 are nonzero complex numbers. The border rank of t1
is at least the border rank of

t2 :=
∑
i

αi1,i2,i3 |i1i2〉 |i2 + i3 − 1〉 |i3i1〉 ∈ Cn2
⊗C2n−1 ⊗Cn2

.

Apply φ to the central tensor leg of t2 and then flatten to obtain

A :=
∑
i

∑
j1<···<jp

αi1,i2,i3 |i1i2〉 |j1〉∧· · ·∧|jp〉 ⊗ |j1〉∧· · ·∧|jp〉∧|i2 + i3 − 1〉 |i3i1〉 .

View A as a direct sum of n matrices Ai1 ∈ (Cn ⊗ ∧pC2n−1) ⊗ (∧p+1C2n−1 ⊗ Cn); the
matrix Ai1 corresponds to the linear map

fi1 : |i2〉 |j1〉∧· · ·∧|jp〉 7→
∑
i3

αi1,i2,i3 |j1〉∧· · ·∧|jp〉∧|i2 + i3 − 1〉 |i3〉 .

Let p = n− 1. We claim that every matrix Ai1 is upper triangular with elements αi1,i2,i3 on
the diagonal, up to permutations of the rows and columns. Assuming the claim is true, we
get that R(A) =

∑
i1

R(Ai1) = ndim(Cn ⊗ ∧n−1C2n−1) = n2(2n−1
n−1

)
. This implies the lower

bound Rs(IMM3
n) ≥ n2(2n−1

n−1
)
/
(2n−2
n−1

)
= 2n2 − n.

To prove this claim we define a partial order on the basis elements |j1〉 ∧ · · · ∧ |jn〉 ⊗ |`〉 of
the target space of Ai1 . We will use the same partial order as Landsberg and Michałek [12].
Denote the basis elements of the target space by (P, `) with P an n-subset of [2n− 1] and
` ∈ [n]. Let (P1, `1) and (P2, `2) be two such basis elements and define ` := min(`1, `2). We
say (P1, `1) < (P2, `2)
1. if the ordered sequence of the ` smallest elements in P2 is lexicographically smaller than

the ordered sequence of the ` smallest elements in P1;
2. or if the sequences of ` smallest elements are equal and `1 < `2.
One checks that this defines a partial order and that the unique minimal element in this
order is ({n, . . . , 2n − 1}, 1). For example, with n = 2 the partial order has the following
Hasse diagram.

({1, 2}, 2)

({1, 3}, 2)

({1, 2}, 1)({1, 3}, 1)

({2, 3}, 2)

({2, 3}, 1)
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We prove the claim by induction on <, with the minimal element as a base case. For
now let all the αi1,i2,i3 be 1. First, under Ai1 we have

|n〉 ⊗ |n+ 1〉 ∧ · · · ∧ |2n− 1〉 7→ |n〉 ∧ · · · ∧ |2n− 1〉 ⊗ |1〉 ,

so the minimal element ({n, . . . , 2n− 1}, 1) is in the image of Ai1 . Let (P, `) be in the target
space of Ai1 and assume that every (P ′, `′) with (P ′, `′) < (P, `) is in the image. Write
P = (p1, . . . , pn) with p1 ≤ · · · ≤ pn. Under Ai1 we have,

|p1〉 ∧ · · · p̂` · · · ∧ |pn〉 ⊗ |1 + p` − `〉 7→
∑
m

|p1〉 ∧ · · · p̂` · · · ∧ |pn〉 ∧ |p` − `+m〉 ⊗ |m〉 .

Taking m = `, one sees that the basis element (P, `) is present in the sum. Moreover, for
any other (P ′,m) appearing in the sum we have (P ′,m) < (P, `). Indeed, if m > `, then
p`− `+m > p`, so the smallest ` elements in P ′ are lexicographically larger than the smallest
` elements in P , meaning (P ′,m) < (P, `) by rule 1; if m < `, then pm ≤ p` − `+m < p`,
so the m smallest elements of P ′ and P are equal, meaning (P ′,m) < (P, `) by rule 2.
Therefore, the basis element (P, `) is in the image. This argument shows that Ai1 has full
rank. Moreover, this argument shows that, up to a permutation of the rows and columns,
the matrix Ai1 is upper triangular with ones on the diagonal. Repeating this argument with
general values for αi1,i2,i3 proves the claim. J

I Remark. The lower bound in Theorem 20 improves a lower bound of Ikenmeyer on the
border support rank of IMM3

n [11, 8.2.17].

5 Strassen’s laser method for iterated matrix multiplication

In this section we show that NQ(EQCk
n ) < kn for odd k. We will prove this result in the

language of algebraic complexity theory.

I Definition 21. Define ωk := inf{α ∈ R | R(IMMk
n) ∈ O(nα)}. We call this the exponent

of iterated matrix multiplication. Define ωs,k := inf{α ∈ R | Rs(IMMk
n) ∈ O(nα)}. We call

this the support rank exponent of iterated matrix multiplication.

Asymptotically, we have NQ(EQCk
n ) ≤ ωs,k n+O(1) ≤ ωk n+O(1). The exponents ω3

and ωs,3 are known as ω and ωs in the literature. The support rank exponent of matrix
multiplication was first studied by Cohn and Umans [9]. The best upper bound on ωs comes
from the upper bound ω ≤ 2.3728639 of Le Gall [14]. Interestingly, Cohn and Umans show
the relationship

ω ≤ (3ωs − 2)/2.

Therefore, one way of finding upper bounds on ω is to construct an efficient quantum
communication protocol for the cyclic equality problem EQC3

n . On the other hand, this
observation indicates that improving the bounds on the quantum communication complexity
of EQCk

n is a hard problem.
For any k we have k − 1 ≤ ωk ≤ k, and if k is even, then ωk = k (Proposition 18). The

aim of this section will be to show: if k ≥ 3 is odd, then

ωk < k.
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Schönhage τ -theorem. In this section we will generalize some tools for obtaining upper
bounds on the exponent of ω3 to all exponents ωk, in particular, we generalize the Schönhage
τ -theorem. The proofs in this section are straightforward generalizations of the proofs for
k = 3 which can be found in [5]. In the next paragraph, we will use Strassen’s laser method
to show that ωk < k for all odd k.

First we recall an important relationship between border rank and rank. We use the
following more precise notion of border rank. Let h ∈ N and let t be a tensor in C⊗m1⊗· · ·⊗
C⊗mk . Define Rh(t) to be the minimum number r such that there exist vectors vji ∈ (C[ε])mj
that satisfy

∑r
i=1 v

1
i ⊗ · · · ⊗ vki = εht+O(εh+1). A well-known but nontrivial result is that

R(t) = minh Rh(t). It is not hard to show that Rh+h′(t⊗t′) ≤ Rh(t) Rh′(t′). The relationship
we are talking about is the following.

I Proposition 22. For every h, k ∈ N, there is a number ch such that for all tensors
t ∈ Cm1 ⊗ · · · ⊗Cmk , R(t) ≤ ch Rh(t). The number ch depends polynomially on h.

Proof. Let t be a tensor in Cm1 ⊗ · · · ⊗Cmk with Rh(t) = r. Then there are vji ∈ (C[ε])mj
such that

r∑
i=1

v1
i ⊗ · · · ⊗ vki = εht+O(εh+1).

Decomposing every vji into ε-homogeneous components vji =
∑h
aj=0 ε

ajvji (aj), and collecting
powers of ε gives

r∑
i=1

∑
a1,...,ak∈[h]

εa1+···+ak v1
i (a1)⊗ · · · ⊗ vki (ak) = εht+O(εh+1).

Taking only the summands such that a1 + · · · + ak = h gives a rank decomposition of t.
There are

(
h+k−1
k−1

)
r such summands. J

Next, we show that an upper bound on the border rank of ‘unbalanced’ iterated matrix
multiplication tensors yields and upper bound on ωk. Define the tensor 〈n1, n2, . . . , nk〉 to be∑

x∈[n1]×···×[nk]

|x1x2〉 |x2x3〉 · · · |xkx1〉 .

So IMMk
n = 〈n, n, . . . , n〉 (n occurs k times).

I Proposition 23. If R(〈n1, n2, . . . , nk〉) ≤ r, then ωk ≤ k logn1···nk r.

Proof. Let N = n1 · · ·nk. There is an h such that Rh(〈n1, . . . , nk〉) ≤ r. By taking the
tensor product of all cyclic shifts of 〈n1, . . . , nk〉, we get Rkh(〈N, . . . , N〉) ≤ rk and thus
Rkhs(〈Ns, . . . , Ns〉) ≤ rks for all s. Hence R(〈Ns, . . . , Ns〉) ≤ ckhsrks for some number ckhs
which is constant in N . Therefore,

ω ≤ logNs(ckhsrks) = ks logNs(r) + logNs(ckhs).

If s goes to infinity then logNs(ckhs) goes to zero, so ωk ≤ k logN (r). J

The real workhorse is the following straightforward generalization of a theorem of Schön-
hage [16].
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I Proposition 24 (k-party Schönhage τ -theorem). Suppose that r > p and

R
( p⊕
i=1
〈ni1, ni2, . . . , nik〉

)
≤ r.

Define τ by
∑p
i=1
(∏k

j=1 n
i
j

)τ = r. Then ωk ≤ kτ

We follow the proof of [5]. We first prove two lemmas. For tensors s, t ∈ Cm1 ⊗· · ·⊗Cmk ,
let s ≤ t denote the existence of an SLOCC transformation mapping t to s. Let a, b ∈ N + 1.

I Lemma 25. Let t be a tensor such that R(t⊕a) ≤ b. Then for all s, R((t⊗s)⊕a) ≤ db/aesa.

Proof. We prove the lemma by induction over s. The base case s = 1 follows from the
assumption. For the induction step, we have

(t⊗s+1)⊕a = t⊕a ⊗ t⊗s ≤ GHZb ⊗ t⊗s = (t⊗s)⊕b,

and thus, by the induction hypothesis,

R((t⊗s+1)⊕a) ≤ R((t⊗s)⊕b) ≤ R((t⊗s)⊕(db/aea)) ≤ d baed
b
ae
sa ≤ d bae

s+1a,

proving the lemma. J

I Lemma 26. If R(〈n1, n2, . . . , nk〉⊕a) ≤ b, then ωk ≤ k logn1···nkdb/ae.

Proof. The inequality R(〈n1, n2, . . . , nk〉⊕a) ≤ b implies by Theorem 25 the inequality
R(〈ns1, ns2, . . . , nsk〉⊕a) ≤ db/aesa which by Proposition 23 yields

ωk ≤ k
s log d bae+ log(a)
s log(n1 · · ·nk) ,

which goes to k log db/ae/ log(n1 · · ·nk) when s goes to infinity. J

Proof of Proposition 24. We assume R
(⊕p

i=1〈ni1, ni2, . . . , nik〉
)
≤ r. This implies that

there is an h ∈ N such that Rh

(⊕p
i=1〈ni1, ni2, . . . , nik〉

)
≤ r. Taking the sth tensor power

gives Rhs

(
(
⊕p

i=1〈ni1, ni2, . . . , nik〉)⊗s
)
≤ rs. We expand the tensor power to get

Rhs

(⊕
σ

( p⊗
i=1

〈
(ni1)σi , (ni2)σi , . . . , (nik)σi

〉)⊕( s
σ1,...,σp)) ≤ rs,

where the first direct sum is over all p-tuples σ of nonnegative integers with sum s. We can
also write this inequality as

Rhs

(⊕
σ

〈∏
i(ni1)σi , . . . ,

∏
i(nik)σi

〉⊕( s
σ1,...,σp)

)
≤ rs.

There exists a number chs depending polynomially on h and s such that

R
(⊕

σ

〈∏
i(ni1)σi , . . . ,

∏
i(nik)σi

〉⊕( s
σ1,...,σp)

)
≤ chs rs.

Define τ by
∑p
i=1
(∏k

j=1 n
i
j

)τ = r. Then
∑
σ

(
s

σ1,...,σp

)(∏
i(ni1)σi · · ·

∏
i(nik)σi

)τ = rs. In this
sum, consider the maximum summand and fix the corresponding σ. Define the numbers
nj :=

∏
i(nij)σi . Let a :=

(
s

σ1,...,σp

)
and b := rschs. We apply Theorem 26 to the inequality

R(〈n1, . . . , nk〉⊕a) ≤ b to obtain

ωk ≤ kτ + (p− 1) log(s+ 1) + log(chs)
log(n1 · · ·nk) ,

which goes to kτ when s goes to infinity. (See [5] for more details.) J
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Strassen’s laser method. We will now use Strassen’s laser method to prove the main result
of this section.

I Theorem 27. For any odd k we have ωk < k.

We will give a proof for the case k = 5, the other cases being similar. Define the 5-tensor
Str5

q =
∑q
i=1 |ii000〉+ |0ii00〉 in Cq+1 ⊗Cq ⊗Cq+1 ⊗C⊗C.

I Proposition 28. R(Str5
q) ≤ q + 1.

Proof. Expanding
∑q
i=1(|0〉+ ε |i〉) |i〉 (|0〉+ ε |i〉) |0〉|0〉 gives

q∑
i=1
|0i000〉+ ε

q∑
i=1
|ii000〉+ |0ii00〉+O(ε2).

Subtracting |0〉
(∑q

i=1 |i〉
)
|000〉 yields εStr5

q +O(ε2). J

I Proposition 29. GHZ5
2 ≤ 〈2, 2, 2, 2, 2〉.

Proof. Let φ be the map |ab〉 7→ δ[a=b] |a〉. Apply φ⊗5 to 〈2, 2, 2, 2, 2〉. This yields one copy
of GHZ[5]

2 . J

I Remark. We mention that the subrank result of Proposition 29 can by improved asymp-
totically in the sense that ω(〈2, 2, 2, 2, 2〉,GHZ5) = 1/2 [20]. Using this fact in the proof of
Theorem 27 gives the slightly better upper bound ωk ≤ logq((q + 1)k/4).

For the proof of Theorem 27 we have to define the notion of the decomposition of the
support of a tensor and the corresponding inner and outer structure of a tensor. Let I1, . . . , Ik
be finite sets. A decomposition D of I1 × · · · × Ik is a collection of sets Iji such that

Ii =
⊔
j

Iji ,

meaning that for every i, ∩jIji = ∅ and ∪jIji = Ii. Let t be a tensor in Cm1 ⊗ · · · ⊗Cmk

and index the basis elements in this space by elements of [m1] × · · · × [mk]. Let D be a
decomposition of [m1]× · · · × [mk]. We view D as a ‘cut’ of [m1]× · · · × [mk] into smaller
product sets and thus as a ‘cut’ of t into smaller tensors. We define t|

I
j1
1 ,I

j2
2 ,...,I

jk
k

to be the
restriction of t to the basis elements in Ij1

1 × I
j2
2 × . . .× I

jk
k . These smaller tensors we think

of as the ‘inner structure’ of t. We define the ‘outer structure’ of t with respect to D to be
the tensor tD indexed by sequences (j1, . . . , jk) such that tD has a 1 at position (j1, . . . , jk)
if t restricted to Ij1

1 × · · · × I
jk
k is not the zero tensor, and a 0 otherwise.

Proof of Theorem 27. We will give a proof for the case k = 5, the other cases being similar.
Define a block decomposition D of the support I1 × · · · × I5 of Str5

q by

I1 = {0} ∪ {1, . . . , q}
I2 = {1, . . . , q}
I3 = {0} ∪ {1, . . . , q}
I4 = {0}
I5 = {0}.

We have the outer structure (Str5
q)D = |11000〉 + |01100〉 ∼= |10100〉 + |00000〉. Note that

this is just an EPR pair between party 1 and 3. The inner structures are
∑q
i=1 |ii000〉 and
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∑q
i=1 |0ii00〉, which are also known as 〈1, q, 1, 1, 1〉 and 〈1, 1, q, 1, 1〉. Let Cyc5 be the map

t 7→ t⊗σt⊗σ2t⊗σ3t⊗σ4t with σ = (12345). Let D̂ = Cyc5D be the naturally corresponding
decomposition. Then

〈2, 2, 2, 2, 2〉⊗s = (Cyc5 Str5
q)⊗sD̂⊗s and R

(
(Cyc5 Str5

q)⊗s
)
≤ (q + 1)5s. (1)

Note how the first statement relies on 5 being odd.
The inner structure of (Cyc5 Str5

q)⊗sD̂⊗s consists of tensors from I := {〈n1, n2, n3, n4, n5〉 |
n1 · · ·n5 = q5s}. Combining equation (1) with Proposition 29 gives that there are 2s elements
t1, t2, . . . ∈ I such that

R(t1 ⊕ t2 ⊕ · · · ) ≤ (q + 1)5s.

Now the τ -theorem says that if we define τ by

2s(q5s)τ = (q + 1)5s

then ω5 ≤ 5τ . Therefore,

ω5 ≤ 5τ ≤ logq
(q + 1)5

2

which gives ω5 ≤ 4.84438. In general, one gets ωk ≤ logq
(q+1)k

2 which is strictly smaller than
k for q large enough. J
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