107 research outputs found

    Reverse Protection Assay: A Tool to Analyze Transcriptional Rates from Individual Promoters

    Get PDF
    Transcriptional activity of entire genes in chloroplasts is usually assayed by run-on analyses. To determine not only the overall intensity of transcription of a gene, but also the rate of transcription from a particular promoter, we created the Reverse RNase Protection Assay (RePro): in-organello run-on transcription coupled to RNase protection to define distinct transcript ends during transcription. We demonstrate successful application of RePro in plastid promoter analysis and transcript 3\u27 end processing

    Operation and planning of distribution networks with integration of renewable distributed generators considering uncertainties: a review

    Get PDF
    YesDistributed generators (DGs) are a reliable solution to supply economic and reliable electricity to customers. It is the last stage in delivery of electric power which can be defined as an electric power source connected directly to the distribution network or on the customer site. It is necessary to allocate DGs optimally (size, placement and the type) to obtain commercial, technical, environmental and regulatory advantages of power systems. In this context, a comprehensive literature review of uncertainty modeling methods used for modeling uncertain parameters related to renewable DGs as well as methodologies used for the planning and operation of DGs integration into distribution network.This work was supported in part by the SITARA project funded by the British Council and the Department for Business, Innovation and Skills, UK and in part by the University of Bradford, UK under the CCIP grant 66052/000000

    Stochastic approach for active and reactive power management in distribution networks

    Get PDF
    YesIn this paper, a stochastic method is proposed to assess the amount of active and reactive power that can be injected/absorbed to/from grid within a distribution market environment. Also, the impact of wind power penetration on the reactive and active distribution-locational marginal prices is investigated. Market-based active and reactive optimal power flow is used to maximize the social welfare considering uncertainties related to wind speed and load demand. The uncertainties are modeled by Scenario-based approach. The proposed model is examined with 16-bus UK generic distribution system.Supported by the Higher Education Ministry of Iraqi government

    Optimal operation of distribution networks with high penetration of wind and solar power within a joint active and reactive distribution market environment

    Get PDF
    YesIn this paper, a stochastic approach for the operation of active distribution networks within a joint active and reactive distribution market environment is proposed. The method maximizes the social welfare using market based active and reactive optimal power flow (OPF) subject to network constraints with integration of demand response (DR). Scenario-Tree technique is employed to model the uncertainties associated with solar irradiance, wind speed and load demands. It further investigates the impact of solar and wind power penetration on the active and reactive distribution locational prices (D-LMPs) within the distribution market environment. A mixed-integer linear programming (MILP) is used to recast the proposed model, which is solvable using efficient off-the shelf branch-and cut solvers. The 16-bus UK generic distribution system is demonstrated in this work to evaluate the effectiveness of the proposed method. Results show that DR integration leads to increase in the social welfare and total dispatched active and reactive power and consequently decrease in active and reactive D-LMPs.Ministry of Higher Education and Scientific Research of Ira

    Distribution Network Reconfiguration Considering Security-Constraint and Multi-DG Configurations

    Get PDF
    YesThis paper proposes a novel method for distribution network reconfiguration considering security-constraints and multi-configuration of renewable distributed generators (DG). The objective of the proposed method is to minimize the total operational cost using security constrained optimal power flow (SCOPF). The impact of multi-configuration of renewable DGs in a meshed network is investigated. In this work, lines were added to the radial distribution network to analyse the network power flow in different network configurations. The added lines were connected to the closest generator bus which offered least operating cost. A 16-bus UK generic distribution system (UKGDS) was used to model the efficiency of the proposed method. The obtained results in multi-DG configuration ensure the security of the network in N-1 contingency criteria

    Evaluation of solar energy powered seawater desalination pro-cesses: A review

    Get PDF
    YesSolar energy, amongst all renewable energies, has attracted inexhaustible attention all over the world as a supplier of sustainable energy. The energy requirement of major seawater desalination processes such as multistage flash (MSF), multi-effect distillation (MED) and reverse osmosis (RO) are fulfilled by burning fossil fuels, which impact the environment significantly due to the emission of greenhouse gases. The integration of solar energy systems into seawater desalination processes is an attractive and alternative solution to fossil fuels. This study aims to (i) assess the progress of solar energy systems including concentrated solar power (CSP) and photovoltaic (PV) to power both thermal and membrane seawater desalination processes including MSF, MED, and RO and (ii) evaluate the economic considerations and associated challenges with recommendations for further improvements. Thus, several studies on a different combination of seawater desalination processes of solar energy systems are reviewed and analysed concerning specific energy consumption and freshwater production cost. It is observed that although solar energy systems have the potential of reducing carbon footprint significantly, the cost of water production still favours the use of fossil fuels. Further research and development on solar energy systems are required to make their use in desalination economically viable. Alternatively, the carbon tax on the use of fossil fuels may persuade desalination industries to adopt renewable energy such as solar

    A case of malonyl coenzyme A decarboxylase deficiency with novel mutations and literature review

    Get PDF
    IntroductionMalonyl coenzyme A decarboxylase deficiency is caused by an abnormality in the MLYCD gene. The clinical manifestations of the disease involve multisystem and multiorgan.MethodsWe collected and analyzed a patient's clinical characteristics, genetic chain of evidence and RNA-seq. We use the search term “Malonyl-CoA Decarboxylase Deficiency” on Pubmed to collect cases reported.ResultsWe report a 3-year-old girl who is presented with developmental retardation, myocardial damage and elevated C3DC. High-throughput sequencing identified heterozygous mutation (c.798G>A, p.Q266?) in the patient inherited from her father. The other heterozygous mutation (c.641+5G>C) was found in the patient inherited from her mother. RNA-seq showed that there were 254 differential genes in this child, among which 153 genes were up-regulated and 101 genes were down-regulated. Exon jumping events occurred in exons encoding PRMT2 on the positive chain of chromosome 21, which led to abnormal splicing of PRMT2. (P<0.05, FDR<0.05). The result of SNP showed that there were multiple mutation sites on chromosome 1, which may affect the downstream gene variation at the DNA level. The literature review identified 54 cases described since 1984.DiscussionIt is the first report about the locus, adding a new item to the MLYCD mutation library. Developmental retardation and cardiomyopathy are the most common clinical manifestations, with commonly elevated malonate and malonyl carnitine levels in children

    Cytokinin induces genome-wide binding of the type-B response regulator ARR10 to regulate growth and development in Arabidopsis

    Get PDF
    Cytokinins, like other plant hormones, affect a diverse array of plant growth and development processes and responses to the environment. How a signaling molecule mediates such a diverse array of outputs and how these response pathways are integrated with other inputs remain fundamental questions in plant biology. An integrated set of approaches was used to define the targets of the type-B response regulators, a key set of transcription factors that control cytokinin-dependent gene expression. Results shed light on the physiological role of the type-B ARRs in regulating the cytokinin response, mechanism of type-B ARR activation, and basis by which cytokinin regulates diverse aspects of growth and development as well as responses to biotic and abiotic factors
    corecore