14 research outputs found

    Mechanism and Timescales of Reversible p‐Doping of Methylammonium Lead Triiodide by Oxygen

    Get PDF
    Understanding and controlling the energy level alignment at interfaces with metal halide perovskites (MHPs) is essential for realizing the full potential of these materials for use in optoelectronic devices. To date, however, the basic electronic properties of MHPs are still under debate. Particularly, reported Fermi level positions in the energy gap vary from indicating strong n- to strong p-type character for nominally identical materials, raising serious questions about intrinsic and extrinsic defects as dopants. ​In this work, photoemission experiments demonstrate that thin films of the prototypical methylammonium lead triiodide (MAPbI3) behave like an intrinsic semiconductor in the absence of oxygen. Oxygen is then shown to be able to reversibly diffuse into and out of the MAPbI3 bulk, requiring rather long saturation timescales of ≈1 h (in: ambient air) and over 10 h (out: ultrahigh vacuum), for few 100 nm thick films. Oxygen in the bulk leads to pronounced p-doping, positioning the Fermi level universally ≈0.55 eV above the valence band maximum. The key doping mechanism is suggested to be molecular oxygen substitution of iodine vacancies, supported by density functional theory calculations. This insight rationalizes previous and future electronic property studies of MHPs and calls for meticulous oxygen exposure protocols.Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659DFG http://dx.doi.org/10.13039/501100001659German Research Foundation http://dx.doi.org/10.13039/501100001659Peer Reviewe

    The Electronic Properties of a 2D Ruddlesden‐Popper Perovskite and its Energy Level Alignment with a 3D Perovskite Enable Interfacial Energy Transfer

    Get PDF
    The success of using 2D Ruddlesden-Popper metal halide perovskites (MHPs) in optoelectronic devices has ignited great interest as means for energy level tuning at the interface with 3D MHPs. Inter alia, the application of 2D phenylethylammonium lead quaternary iodide (PEA2PbI4)/3D MHPs interfaces has improved various optoelectronic devices, where a staggered type-II energy level alignment is often assumed. However, a type-II heterojunction seems to contradict the enhanced photoluminescence observed for 2D PEA2PbI4/3D MHP interfaces, which raises fundamental questions about the electronic properties of such junctions. In this study, using direct and inverse photoelectron spectroscopy, it is revealed that a straddling type-I energy level alignment is present at 2D PEA2PbI4/3D methylammonium lead triiodide (MAPbI3) interfaces, thus explaining that the photoluminescence enhancement of the 3D perovskite is induced by energy transfer from the 2D perovskite. These results provide a reliable fundamental understanding of the electronic properties at the investigated 2D/3D MHP interfaces and suggest careful (re)consideration of the electronic properties of other 2D/3D MHP heterostructures.Peer Reviewe

    Interface Engineering of Solution-Processed Hybrid Organohalide Perovskite Solar Cells

    Get PDF
    Engineering the interface between the perovskite absorber and the charge-transporting layers has become an important method for improving the charge extraction and open-circuit voltage ( V) of hybrid perovskite solar cells. Conjugated polymers are particularly suited to form the hole-transporting layer, but their hydrophobicity renders it difficult to solution-process the perovskite absorber on top. Herein, oxygen plasma treatment is introduced as a simple means to change the surface energy and work function of\ua0hydrophobic polymer interlayers for use as p-contacts in perovskite solar cells. We find that upon oxygen plasma treatment, the\ua0hydrophobic\ua0surfaces of different prototypical p-type polymers became sufficiently hydrophilic to enable subsequent perovskite junction processing. In addition, the oxygen plasma treatment also increased the ionization potential of the polymer such that it became closer to the valance band energy of the perovskite. It was also found that the oxygen plasma treatment could increase the electrical conductivity of the p-type polymers, facilitating more efficient charge extraction. On the basis of this concept, inverted MAPbI perovskite devices with different oxygen plasma-treated polymers such as P3HT, P3OT, polyTPD, or PTAA were fabricated with power conversion efficiencies of up to 19%

    Interface Modification for Energy Levels Alignment and Charge Extraction in CsPbI3_3 Perovskite Solar Cells

    Full text link
    In perovskite solar cells (PSCs) energy levels alignment and charge extraction at the interfaces are the essential factors directly affecting the device performance. In this work, we present a modified interface between all-inorganic CsPbI3_3 perovskite and its hole selective contact (Spiro-OMeTAD), realized by a dipole molecule trioctylphosphine oxide (TOPO), to align the energy levels. On a passivated perovskite film, by n-Octyl ammonium Iodide (OAI), we created an upward surface band-bending at the interface by TOPO treatment. This improved interface by the dipole molecule induces a better energy level alignment and enhances the charge extraction of holes from the perovskite layer to the hole transport material. Consequently, a Voc of 1.2 V and high-power conversion efficiency (PCE) of over 19% were achieved for inorganic CsPbI3_3 perovskite solar cells. Further, to demonstrate the effect of the TOPO dipole molecule, we present a layer-by-layer charge extraction study by transient surface photovoltage technique (trSPV) accomplished by charge transport simulation.Comment: 20 pages, 4 Figure

    Electronic Properties of Organic-Inorganic Halide Perovskites and Their Interfaces

    Get PDF
    Über die besonders hohe Effizienz von Halid-Perowskit (HaP)-basierten optoelektronischen Bauteilen wurde bereits in der Literatur berichtet. Um die Entwicklung dieser Bauteile voranzutreiben, ist ein umfassendes und verlĂ€ssliches VerstĂ€ndnis derer elektronischen Struktur, sowie der Energielevelanordnung (ELA) an HaP GrenzflĂ€chen von grĂ¶ĂŸter Bedeutung. Demzufolge beschĂ€ftigt sich die vorliegende Arbeit mit der Untersuchung i) der Bandstruktur von Perowskit-Einkristallen, um ein solides Fundament fĂŒr die Darlegung der elektronischen Eigenschaften von polykristallinen DĂŒnnschichten zu erarbeiten, und mit ii) den EinflĂŒssen von OberflĂ€chenzustĂ€nden auf die elektronische Struktur der OberflĂ€che, sowie deren Rolle bei der Kontrolle von ELA an HaP GrenzflĂ€chen. Die Charakterisierung erfolgt ĂŒberwiegend mithilfe von Photoelektronenspektroskopie (PES) und ergĂ€nzenden Messmethoden wie Beugung niederenergetischer Elektronen an OberflĂ€chen, UV-VIS-Spektroskopie, Rasterkraftmikroskopie und Kelvin-Sonde. Erstens weist die Banddispersion von zwei prototypischen Perowskit-Einkristallen eine starke Dispersion des jeweiligen oberen Valenzbandes (VB) auf, dessen globales Maximum in beiden FĂ€llen am R-Punkt in der Brillouin-Zone liegt. Dabei wird eine effektive Lochmasse von 0.25 m0 fĂŒr CH3NH3PbBr3, bzw. von ~0.50 m0 fĂŒr CH3NH3PbI3 bestimmt. Basierend auf diesen Ergebnissen werden die elektronischen Spektren von polykristallinen DĂŒnnschichten konstruiert und es wird dadurch aufgezeigt, dass eine Bestimmung der Valenzbandkantenposition ausgehend von einer logarithmischen IntensitĂ€tsskala aufgrund von geringer Zustandsdichte am VB Maximum vorzuziehen ist. Zweitens stellt sich bei der Untersuchung der elektronischen Struktur von frisch prĂ€parierten Perowskit-OberflĂ€chen heraus, dass die n-Typ Eigenschaft eine Folge der Bandverbiegung ist, welche durch donatorartige OberflĂ€chenzustĂ€nde hervorgerufen wird. Des Weiteren weisen die PES-Messungen an Perowskiten mit unterschiedlichen Zusammensetzungen aufgrund von OberflĂ€chenphotospannung eine AnregungslichtintensitĂ€tsabhĂ€ngigkeit der Energieniveaus von bis zu 0.7 eV auf. DarĂŒber hinaus wird die Kontrolle von ELA durch gezielte Variation der OberflĂ€chenzustandsdichte gezeigt, wodurch sich unterschiedliche ELA-Lagen (mit Abweichungen von ĂŒber 0.5 eV) an den GrenzflĂ€chen mit organischen AkzeptormolekĂŒlen erklĂ€ren lassen. Die vorliegenden Ergebnisse verhelfen dazu, die starke Abweichung der in der Literatur berichteten Energieniveaus zu erklĂ€ren und somit ein verfeinertes VerstĂ€ndnis des Funktionsprinzips von perowskit-basierten Bauteilen zu erlangen

    Illumination-Driven Energy Level Realignment at Buried Interfaces between Organic Charge Transport Layers and a Lead Halide Perovskite

    Get PDF
    Tremendous progress in employing metal halide perovskites (MHPs) in a variety of applications, especially in photovoltaics, has been made in the past decade. To unlock the full potential of MHP materials in optoelectronic devices, an improved understanding of the electronic energy level alignment at perovskite-based interfaces is required. This particularly pertains to such interfaces under device operation conditions, e.g. under illumination with visible light such as in a solar cell. Herein, it is revealed that the energy level alignment at the buried interface between a double cation lead halide perovskite film and charge-selective organic transport layers changes upon white light illumination. This is found from photoemission experiments performed with the samples in dark and under illumination, and the interfacial energy level shift is reversible. The underlying mechanism is attributed to the accumulation of one charge carrier type within the perovskite film at the interface under illumination, as a result of the charge-selective nature of the organic layer. The fact that the interfacial energy level alignment at MHP-based junctions under illumination can differ from that in dark is to be taken into account to fully rationalize device characteristics.Peer Reviewe

    Quantum efficiency enhancement of lead-halide Perovskite nanocrystal LEDs by organic lithium salt treatment

    No full text
    Surface-defect passivation is key to achieving high photoluminescence quantum yield in lead halide perovskite nanocrystals. However, in perovskite light-emitting diodes these surface ligands also have to enable balanced charge injection into the nanocrystals to yield high efficiency and operational lifetime. In this respect, alkaline halides have been reported to passivate surface trap states and increase the overall stability of perovskite light emitters. On the one side, the incorporation of alkaline ions into the lead halide perovskite crystal structure is considered to counterbalance cation vacancies, while, on the other side, the excess halides are believed to stabilise the colloids. Here, we report an organic lithium salt, viz. LiTFSI, as a halide-free surface passivation on perovskite nanocrystals. We show that the treatment LiTFSI has multiple beneficial effects on lead halide perovskite nanocrystals and LEDs derived from them. We obtain higher photoluminescence quantum yield and longer exciton lifetime, and a radiation pattern that is more favourable for light outcoupling. The ligand-induced dipoles on the nanocrystal surface shift their energy levels toward lower hole-injection barrier. Overall, these effects add up to a four- to seven-fold boost of the external quantum efficiency in proof-of-concept LED structures, depending on the color of the used lead halide perovskite nanocrystal emitters.Comment: 42 page

    Tuning the Surface Electron Accumulation Layer of In2O3 by Adsorption of Molecular Electron Donors and Acceptors

    No full text
    In2O3, an n‐type semiconducting transparent transition metal oxide, possesses a surface electron accumulation layer (SEAL) resulting from downward surface band bending due to the presence of ubiquitous oxygen vacancies. Upon annealing In2O3 in ultrahigh vacuum or in the presence of oxygen, the SEAL can be enhanced or depleted, as governed by the resulting density of oxygen vacancies at the surface. In this work, an alternative route to tune the SEAL by adsorption of strong molecular electron donors (specifically here ruthenium pentamethylcyclopentadienyl mesitylene dimer, [RuCp*mes]2) and acceptors (here 2,2â€Č‐(1,3,4,5,7,8‐hexafluoro‐2,6‐naphthalene‐diylidene)bis‐propanedinitrile, F6TCNNQ) is demonstrated. Starting from an electron‐depleted In2O3 surface after annealing in oxygen, the deposition of [RuCp*mes]2 restores the accumulation layer as a result of electron transfer from the donor molecules to In2O3, as evidenced by the observation of (partially) filled conduction sub‐bands near the Fermi level via angle‐resolved photoemission spectroscopy, indicating the formation of a 2D electron gas due to the SEAL. In contrast, when F6TCNNQ is deposited on a surface annealed without oxygen, the electron accumulation layer vanishes and an upward band bending is generated at the In2O3 surface due to electron depletion by the acceptor molecules. Hence, further opportunities to expand the application of In2O3 in electronic devices are revealed.Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659National Science Foundation http://dx.doi.org/10.13039/100000001Peer Reviewe
    corecore