42 research outputs found

    Combined effects of precipitation and nitrogen deposition on native and invasive winter annual production in California deserts

    Get PDF
    Primary production in deserts is limited by soil moisture and N availability, and thus is likely to be influenced by both anthropogenic N deposition and precipitation regimes altered as a consequence of climate change. Invasive annual grasses are particularly responsive to increases in N and water availabilities, which may result in competition with native forb communities. Additionally, conditions favoring increased invasive grass production in arid and semi-arid regions can increase fire risk, negatively impacting woody vegetation that is not adapted to fire. We conducted a seeded garden experiment and a 5-year field fertilization experiment to investigate how winter annual production is altered by increasing N supply under a range of water availabilities. The greatest production of invasive grasses and native forbs in the garden experiment occurred under the highest soil N (inorganic N after fertilization = 2.99 g m−2) and highest watering regime, indicating these species are limited by both water and N. A classification and regression tree (CART) analysis on the multi-year field fertilization study showed that winter annual biomass was primarily limited by November–December precipitation. Biomass exceeded the threshold capable of carrying fire when inorganic soil N availability was at least 3.2 g m−2 in piñon-juniper woodland. Due to water limitation in creosote bush scrub, biomass exceeded the fire threshold only under very wet conditions regardless of soil N status. The CART analyses also revealed that percent cover of invasive grasses and native forbs is primarily dependent on the timing and amount of precipitation and secondarily dependent on soil N and site-specific characteristics. In total, our results indicate that areas of high N deposition will be susceptible to grass invasion, particularly in wet years, potentially reducing native species cover and increasing the risk of fire

    The Microphenotron: a robotic miniaturized plant phenotyping platform with diverse applications in chemical biology

    Get PDF
    Background Chemical genetics provides a powerful alternative to conventional genetics for understanding gene function. However, its application to plants has been limited by the lack of a technology that allows detailed phenotyping of whole-seedling development in the context of a high-throughput chemical screen. We have therefore sought to develop an automated micro-phenotyping platform that would allow both root and shoot development to be monitored under conditions where the phenotypic effects of large numbers of small molecules can be assessed. Results The ‘Microphenotron’ platform uses 96-well microtitre plates to deliver chemical treatments to seedlings of Arabidopsis thaliana L. and is based around four components: (a) the ‘Phytostrip’, a novel seedling growth device that enables chemical treatments to be combined with the automated capture of images of developing roots and shoots; (b) an illuminated robotic platform that uses a commercially available robotic manipulator to capture images of developing shoots and roots; (c) software to control the sequence of robotic movements and integrate these with the image capture process; (d) purpose-made image analysis software for automated extraction of quantitative phenotypic data. Imaging of each plate (representing 80 separate assays) takes 4 min and can easily be performed daily for time-course studies. As currently configured, the Microphenotron has a capacity of 54 microtitre plates in a growth room footprint of 2.1 m², giving a potential throughput of up to 4320 chemical treatments in a typical 10 days experiment. The Microphenotron has been validated by using it to screen a collection of 800 natural compounds for qualitative effects on root development and to perform a quantitative analysis of the effects of a range of concentrations of nitrate and ammonium on seedling development. Conclusions The Microphenotron is an automated screening platform that for the first time is able to combine large numbers of individual chemical treatments with a detailed analysis of whole-seedling development, and particularly root system development. The Microphenotron should provide a powerful new tool for chemical genetics and for wider chemical biology applications, including the development of natural and synthetic chemical products for improved agricultural sustainability
    corecore