262 research outputs found

    Inhibited carrier transfer in ensembles of isolated quantum dots

    Get PDF
    We report significant differences in the temperature-dependent and time-resolved photoluminescence (PL) from low and high surface density InxGa1-xAs/GaAs quantum dots (QDs). QD's in high densities are found to exhibit an Arrhenius dependence of the PL intensity, while low-density (isolated) QD's display more complex temperature-dependent behavior. The PL temperature dependence of high density QD samples is attributed to carrier thermal emission and recapture into neighboring QD's. Conversely, in low density QD samples, thermal transfer of carriers between neighboring QD's plays no significant role in the PL temperature dependence. The efficiency of carrier transfer into isolated dots is found to be limited by the rate of carrier transport in the InxGa1-xAs wetting layer. These interpretations are consistent with time-resolved PL measurements of carrier transfer times in low and high density QD's. [S0163-1829(99)04748-7]

    Ethanolic Extract of Aconiti Brachypodi Radix Attenuates Nociceptive Pain Probably Via Inhibition of Voltage-Dependent Na+ Channel

    Get PDF
    Aconiti Brachypodi Radix, belonging to the genus of Aconitum (Family Ranunculaceae), are used clinically as anti-rheumatic, anti-inflammatory and anti-nociceptive in traditional medicine of China. However, its mechanism and influence on nociceptive threshold are unknown and need further investigation. The analgesic effects of ethanolic extract of Aconiti Brachypodi Radix (EABR) were thus studied in vivo and in vitro. Three pain models in mice were used to assess the effect of EABR on nociceptive threshold. In vitro study was conducted to clarify the modulation of the extract on the tetrodotoxin-sensitive (TTX-S) sodium currents in rat’s dorsal root ganglion (DRG) neurons using whole-cell patch clamp technique. The results showed that EABR (5-20 mg/kg, i.g.) could produce dose-dependent analgesic effect on hot-plate tests as well as writhing response induced by acetic acid. In addition, administration of 2.5-10 mg/kg EABR (i.g.) caused significant decrease in pain responses in the first and second phases of formalin test without altering the PGE2 production in the hind paw of the mice. Moreover, EABR (10 μg/ml -1 mg/ml) could suppress TTX-S voltage-gated sodium currents in a dose-dependent way, indicating the underlying electrophysiological mechanism of the analgesic effect of the folk plant medicine. Collectively, our results indicated that EABR has analgesic property in three pain models and useful influence on TTX-S sodium currents in DRG neurons, suggesting that the interference with pain messages caused by the modulation of EABR on TTX-S sodium currents in DRG neurones may explain some of its analgesic effect

    Ge/Si interdiffusion in the GeSi dots and wetting layers

    Get PDF
    The Ge/Si interdiffusion in GeSi dots grown on Si (001) substrate by gas-source molecular beam epitaxy is investigated. Transmission electron microscopy images show that, after annealing, the aspect ratio of the height to base diameter increases. Raman spectra show that the Si-Ge mode redshifts and the intensity of the local Si-Si mode increases with the increase of annealing temperature, which suggests the Ge/Si interdiffusion during annealing. The photoluminescence peaks from the dots and the wetting layers show blueshift due to the atomic intermixing during annealing. The interdiffusion thermal activation energies of GeSi dots and the wetting layers are 2.16 and 2.28 eV, respectively. The interdiffusion coefficient of the dots is about 40 times higher than that of wetting layers and the reasons were discussed. (C) 2001 American Institute of Physics

    Dislocation-induced spatial ordering of InAs quantum dots: Effects on optical properties

    Get PDF
    Misfit dislocations were used to modify the surface morphology and to attain spatial ordering of quantum dots (QDs) by molecular beam epitaxy. Effects of anneal time and temperature on strain-relaxed InxGa1-xAs/GaAs layers and subsequent spatial ordering of InAs QDs were investigated. Photoluminescence (PL) and time-resolved PL was used to study the effects of increased QD positional ordering, increased QD uniformity, and their proximity to dislocation arrays on their optical properties. Narrower inhomogeneous PL broadening from the QDs ordered on dislocation arrays were observed, and differences in PL dynamics were found. (C) 2002 American Institute of Physics

    The Identification of Protein Kinase C Iota as a Regulator of the Mammalian Heat Shock Response Using Functional Genomic Screens

    Get PDF
    BACKGROUND: The heat shock response is widely used as a surrogate of the general protein quality control system within the cell. This system plays a significant role in aging and many protein folding diseases as well as the responses to other physical and chemical stressors. METHODS/PRINCIPAL FINDINGS: In this study, a broad-based functional genomics approach was taken to identify potential regulators of the mammalian heat shock response. In the primary screen, a total of 13724 full-length genes in mammalian expression vectors were individually co-transfected into human embryonic kidney cells together with a human HSP70B promoter driving firefly luciferase. A subset of the full-length genes that showed significant activation in the primary screen were then evaluated for their ability to hyper-activate the HSP70B under heat shock conditions. Based on the results from the secondary assay and gene expression microarray analyses, eight genes were chosen for validation using siRNA knockdown. Of the eight genes, only PRKCI showed a statistically significant reduction in the heat shock response in two independent siRNA duplexes compared to scrambled controls. Knockdown of the PRKCI mRNA was confirmed using quantitative RT-PCR. Additional studies did not show a direct physical interaction between PRKCI and HSF1. CONCLUSIONS/SIGNIFICANCE: The results suggest that PRKCI is an indirect co-regulator of HSF1 activity and the heat shock response. Given the underlying role of HSF1 in many human diseases and the response to environmental stressors, PRKCI represents a potentially new candidate for gene-environment interactions and therapeutic intervention

    Bi-directional cell-pericellular matrix interactions direct stem cell fate

    Get PDF
    Modifiable hydrogels have revealed tremendous insight into how physical characteristics of cells’ 3D environment drive stem cell lineage specification. However, in native tissues, cells do not passively receive signals from their niche. Instead they actively probe and modify their pericellular space to suit their needs, yet the dynamics of cells’ reciprocal interactions with their pericellular environment when encapsulated within hydrogels remains relatively unexplored. Here, we show that human bone marrow stromal cells (hMSC) encapsulated within hyaluronic acid-based hydrogels modify their surroundings by synthesizing, secreting and arranging proteins pericellularly or by degrading the hydrogel. hMSC’s interactions with this local environment have a role in regulating hMSC fate, with a secreted proteinaceous pericellular matrix associated with adipogenesis, and degradation with osteogenesis. Our observations suggest that hMSC participate in a bi-directional interplay between the properties of their 3D milieu and their own secreted pericellular matrix, and that this combination of interactions drives fate

    Coherent magnetic semiconductor nanodot arrays

    Get PDF
    In searching appropriate candidates of magnetic semiconductors compatible with mainstream Si technology for future spintronic devices, extensive attention has been focused on Mn-doped Ge magnetic semiconductors. Up to now, lack of reliable methods to obtain high-quality MnGe nanostructures with a desired shape and a good controllability has been a barrier to make these materials practically applicable for spintronic devices. Here, we report, for the first time, an innovative growth approach to produce self-assembled and coherent magnetic MnGe nanodot arrays with an excellent reproducibility. Magnetotransport experiments reveal that the nanodot arrays possess giant magneto-resistance associated with geometrical effects. The discovery of the MnGe nanodot arrays paves the way towards next-generation high-density magnetic memories and spintronic devices with low-power dissipation

    5-HTTLPR Polymorphism Impacts Task-Evoked and Resting-State Activities of the Amygdala in Han Chinese

    Get PDF
    Background: Prior research has shown that the amygdala of carriers of the short allele (s) of the serotonin transporter (5-HTT) gene (5-HTTLPR) have a larger response to negative emotional stimuli and higher spontaneous activity during the resting state than non-carriers. However, recent studies have suggested that the effects of 5-HTTLPR may be specific to different ethnic groups. Few studies have been conducted to address this issue. Methodology/Principal Findings: Blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) was conducted on thirty-eight healthy Han Chinese subjects (l/l group, n = 19; s/s group, n = 19) during the resting state and during an emotional processing task. Compared with the s/s group, the l/l group showed significantly increased regional homogeneity or local synchronization in the right amygdala during the resting state (|t|.2.028, p,0.05, corrected), but no significant difference was found in the bilateral amygdala in response to negative stimuli in the emotional processing task. Conclusions/Significance: 5-HTTLPR can alter the spontaneous activity of the amygdala in Han Chinese. However, the effect of 5-HTTLPR on the amygdala both in task state and resting state in Asian population was no similar with Caucasians. The
    corecore