46 research outputs found

    Scale-free channeling patterns near the onset of erosion of sheared granular beds

    Full text link
    Erosion shapes our landscape and occurs when a sufficient shear stress is exerted by a fluid on a sedimented layer. What controls erosion at a microscopic level remains debated, especially near the threshold forcing where it stops. Here we study experimentally the collective dynamics of the moving particles, using a set-up where the system spontaneously evolves toward the erosion onset. We find that the spatial organization of the erosion flux is heterogeneous in space, and occurs along channels of local flux σ\sigma whose distribution displays scaling near threshold and follows P(σ)∌J/σP(\sigma)\sim J/\sigma, where JJ is the mean erosion flux. Channels are strongly correlated in the direction of forcing but not in the transverse direction. We show that these results quantitatively agree with a model where the dynamics is governed by the competition of disorder (which channels mobile particles) and particle interactions (which reduces channeling). These observations support that for laminar flows, erosion is a dynamical phase transition which shares similarity with the plastic depinning transition occurring in dirty superconductors. The methodology we introduce here could be applied to probe these systems as well.Comment: 8 pages, 6 figure

    Study of the ejection of grains out of a pressurized cylinder

    No full text
    Nous considérons un scénario hypothétique d’accident initié par une insertion de réactivité nucléaire entrainant la rupture de la gaine d’un crayon combustible. La violence du contact avec le fluide caloporteur dépendrait fortement du débit de fragment combustible, initialement confinĂ© avec un gaz pressurisĂ©, sortant du crayon. Ce travail de thèse a consisté à étudier cette dynamique en la modélisant par la vidange d’un milieu granulaire hors d’un silo pressurisé. Nous nous sommes d’abord concentrés sur le rôle de la géométrie interne du silo grĂące Ă  un fond inclinĂ©. Pour un faible angle d’inclinaison, l’orientation de l’écoulement granulaire (donc le dĂ©bit) est contrôlée par la friction pariétale, tandis qu’une grande inclinaison détermine cette orientation. Nous nous sommes ensuite intéressés au rôle du gaz pressurisé d’abord en imposant une surpression d’air constante puis en considérant un cas transitoire dans lequel une surpression initiale provoque la rupture de l’orifice. Dans les deux configurations, le débit granulaire est mis à l’échelle par une loi de Beverloo modifiée où le gradient de pression du gaz près de l’orifice agit comme une force motrice supplémentaire qui peut ĂȘtre décrite par la loi de Forchheimer. Nous proposons un modèle quasi-stationnaire pour le débit granulaire ainsi qu’une simulation continue basée sur un modèle multiphasique qui reproduisent bien les rĂ©sultats expĂ©rimentaux. A forts débits, nous observons une instabilité du jet, initiée par des oscillations de pression Ă  l’orifice. Enfin nous avons montrĂ© que le milieu environnant agit sur la condition de pression Ă  la sortie du siloWe consider a hypothetical scenario of reactivity initiated accident in a nuclear power plant. The violence of the so-called fuel-coolant interaction phenomena depends strongly on the flow rate of particles out of the gas pressurized rod. The aim of this thesis was to study how this discharge rate is driven by the internal geometry and the pressurized gas. We focused firstly on the discharge of a rectangular silo with an inclined bottom. For a small inclination angle, the granular flow orientation is controlled by the wall friction, whereas a large inclination angle fully determines this orientation. Secondly, we focused on two configurations with pressurized gas : a case with constant gas overpressure at the top of the silo and a more transient case for which an initial larger overpressure initiates the rupture of an orifice. The granular flow rate increases significantly with the gas flow, especially for the finer particles and the large overpressures. In both cases, the flow rate scales with a modified Beverloo law where the gas pressure gradient near the outlet acts as an additional driving force. The pressure gradient is well described by a Forchheimer resistance law through the granular medium. We therefore propose a quasi-steady model for the transient description of the granular flow rate. The two configurations were successfully reproduced by numerical simulations based on a continuum multiphase model. For the larger flow rates, instabilities of the granular jet were found to be initiated by pressure oscillations in the outlet region. The presence of water surrounding the silo only acts through an additional hydrostatic pressure effec

    Etude de l'éjection de grains hors d'un cylindre pressurisé

    No full text
    We consider a hypothetical scenario of reactivity initiated accident in a nuclear power plant. The violenceof the so-called fuel-coolant interaction phenomena, that we arbitrarily assume to occur during the accident, dependsstrongly on the flow rate of particles out of the gas pressurized rod in which they were initially confined. The aimof this thesis was to study how this discharge rate is driven by the internal geometry and the pressurized gas. Fuelparticles were experimentally simulated by a dense granular material discharging out of a confined and pressurizedsilo. The controlled parameters were the particle size, density and shape, the outlet size and the gas pressure, whereasthe granular and gas flow rates and the pressure along the silo are measured. Discrete and continuous numericalsimulations were performed on similar configurations.We focused firstly on the discharge of a rectangular silo of thickness W, with a lateral outlet of size D and aninclined bottom with a parametric angle. For a small inclination angle, the granular flow orientation depends on theaspect ratio D/W due to the wall friction, whereas a large inclination angle fully determines this orientation. Theseresults were successfully reproduced by numerical simulations.Secondly, we focused on two configurations with pressurized gas : a case with constant gas overpressure at thetop of the silo and a more transient case for which an initial larger overpressure initiates the rupture of an orifice. Thegranular flow rate increases significantly with the gas flow, especially for the finer particles and the large overpressures.In both cases, the flow rate scales with a modified Beverloo law where the gas pressure gradient near the outlet actsas an additional driving force. The pressure gradient is well described by a Forchheimer resistance law through thegranular medium. We therefore propose a quasi-steady model for the transient description of the granular flow rate.The two configurations were successfully reproduced by numerical simulations based on a continuum multiphasemodel. For the larger flow rates, instabilities of the granular jet were found to be initiated by pressure oscillationsin the outlet region. The presence of water surrounding the silo only acts through an additional hydrostatic pressureeffect.- Nous considĂ©rons un scĂ©nario hypothĂ©tique d’accident initiĂ© par une insertion de rĂ©activitĂ© dans unecentrale nuclĂ©aire entrainant la rupture de la gaine d’un crayon de combustible. La violence du contact entre lecombustible et le fluide caloporteur dĂ©pendrait alors fortement du dĂ©bit de fragment combustible sortant hors ducrayon qui est initialement confinĂ© avec le gaz pressurisĂ©. Ce travail de thĂšse a consistĂ© Ă  Ă©tudier cette dynamique enla modĂ©lisant par la vidange d’un milieu granulaire hors d’un silo pressurisĂ©. Les paramĂštres de contrĂŽle sont la taille,la densitĂ© et la forme des particules ainsi que la taille de l’orifice et la pression initiale d’air imposĂ©e dans le silo, tandisque les dĂ©bits d’air et du milieu granulaire et la pression d’air le long du silo sont mesurĂ©s. Les rĂ©sultats expĂ©rimentauxont Ă©tĂ© confrontĂ©s avec des simulations numĂ©riques discrĂštes et continues avec une rhĂ©ologie visco-plastique pour lemilieu granulaire.Afin d’étudier le rĂŽle du confinement dans la gĂ©omĂ©trie d’intĂ©rĂȘt, nous nous sommes d’abord concentrĂ©s sur lavidange d’un silo rectangulaire d’épaisseurW, avec une sortie latĂ©rale de taille D et un fond dont nous varions l’inclinaison.Pour un faible angle d’inclinaison, l’orientation de l’écoulement granulaire (et donc le dĂ©bit) est contrĂŽlĂ©e parla friction pariĂ©tale et dĂ©pend du rapport d’aspect de l’orifice D/W, tandis qu’un grand angle d’inclinaison dĂ©termineentiĂšrement cette orientation.Nous nous sommes ensuite intĂ©ressĂ©s au rĂŽle du gaz pressurisĂ© d’abord en imposant une surpression d’air constanteen haut du silo puis en considĂ©rant un cas plus transitoire dans lequel une surpression initiale importante provoque larupture de l’orifice. Le dĂ©bit granulaire augmente significativement avec le dĂ©bit d’air, d’autant plus que les particulessont fines. Dans les deux configurations, le dĂ©bit granulaire est mis Ă  l’échelle par une loi de Beverloo modifiĂ©e oĂčle gradient de pression du gaz prĂšs de l’orifice agit comme une force motrice supplĂ©mentaire. De plus le gradientde pression est bien dĂ©crit par une loi de rĂ©sistance de Forchheimer Ă  travers le milieu granulaire. Nous proposonsdonc un modĂšle quasi-stationnaire pour la description transitoire du dĂ©bit granulaire. Les deux configurations ont Ă©tĂ©reproduites avec succĂšs par la simulation continue basĂ©e sur un modĂšle multiphasique. Pour les plus forts dĂ©bits, nousobservons une instabilitĂ© du jet granulaire, initiĂ©e par des oscillations de pression dans la zone prĂšs de l’orifice. Nousavons variĂ© le milieu environnant et montrĂ© que la prĂ©sence d’eau autour du silo n’agit que par un effet de pressionhydrostatique supplĂ©mentaire

    Non-steady discharge of granular media from silo driven by a pressurized gas

    No full text
    International audienceWe studied experimentally and numerically the effect of an imposed gas pressure on the discharge flow of granular media, through a circular outlet located at the center of the bottom of a cylindrical silo. This study is motivated by the nuclear safety related phenomenology of fuel fragments displacement, idealized by a granular media, within a fuel rod, idealized by an elongated silo, under several accidental conditions, the flow being potentially driven by pressurized fission gases within the rod. We imposed a moderate constant air pressure at the top of the granular column (~ 3000 Pa) and we varied the size and type of the particles and the surrounding fluid where the discharge occurs, using air and water to test the role of the coolant fluid in the nuclear safety problem. The measured parameters are the particle mass flow rate, the volumetric flow rate of air and the pressure along the silo. The particle and air flow rates are found to be non-steady and to increase with time.To model these behaviors, following Zhou et al. [1], we use a two-phase continuum model with africtional rheology to describe particle-particle interactions and we propose a simple quasi-steadyanalytical model considering the air-pressure gradient at the orifice as an additional driving forceto the gravity. We implemented numerically the two-phase continuum model in an axi-symmetricconfiguration which reproduces the experimental results
    corecore