674 research outputs found

    Restoring eastern redcedar encroached watersheds to prairie or switchgrass improves water quality and quantity

    Get PDF
    Eastern redcedar represents a modern-day challenge to Oklahoma as it has encroached approximately eight million acres of land. This conversion is detrimental to the ecological and economic value of the land, reducing ecosystem water provisioning in particular. Eastern redcedar trees consume more water such that less is available for municipal and agricultural uses as well as ecological stream flows. Currently, efforts to reduce eastern redcedar encroachment have been unsuccessful; however, studies have shown eastern redcedar biomass to be a potential ethanol feedstock for the state. The purpose of this study is to compare eastern redcedar removal and replacement with native prairie or planted switchgrass on surface runoff, sediment yield, and biomass production. More specifically, this study monitors surface runoff and sediment yield of encroached eastern redcedar, harvested eastern redcedar, cultivated switchgrass, and native prairie using experimental watersheds (5-10 acres in size). Preliminary analysis shows that removal of eastern redcedar increased water yield by 4-5 fold. Growing switchgrass produced more biomass than restoration to native prairie, but water yield did not differ between the two. Sediment concentrations from encroached eastern redcedar watersheds were higher compared to native prairie watersheds. After harvest, previously encroached watersheds initially experienced an increase in sediment yield due to soil disturbance. After switchgrass and native vegetation re-established, sediment yields declined. These results indicate that water yield and biomass production can be increased by converting eastern redcedar woodlands to switchgrass for use as dedicated biofuel feedstock.Robert E. McNair Post-Baccalaureate Achievement ProgramNational Institute of Food and Agriculture (U.S.)National Science Foundation (U.S.)Oklahoma Louis Stokes Alliance for Minority Participation ProgramNatural Resource Ecology and ManagementBiosystems and Agricultural Engineerin

    Exploiting Class Labels to Boost Performance on Embedding-based Text Classification

    Get PDF
    Text classification is one of the most frequent tasks for processing textual data, facilitating among others research from large-scale datasets. Embeddings of different kinds have recently become the de facto standard as features used for text classification. These embeddings have the capacity to capture meanings of words inferred from occurrences in large external collections. While they are built out of external collections, they are unaware of the distributional characteristics of words in the classification dataset at hand, including most importantly the distribution of words across classes in training data. To make the most of these embeddings as features and to boost the performance of classifiers using them, we introduce a weighting scheme, Term Frequency-Category Ratio (TF-CR), which can weight high-frequency, category-exclusive words higher when computing word embeddings. Our experiments on eight datasets show the effectiveness of TF-CR, leading to improved performance scores over the well-known weighting schemes TF-IDF and KLD as well as over the absence of a weighting scheme in most cases.Comment: CIKM 202

    Eastern redcedar encroachment and water: Update of 2010 research

    Get PDF
    The Oklahoma Cooperative Extension Service periodically issues revisions to its publications. The most current edition is made available. For access to an earlier edition, if available for this title, please contact the Oklahoma State University Library Archives by email at [email protected] or by phone at 405-744-6311

    The critical amplifying role of increasing atmospheric moisture demand on tree mortality and associated regional die-off

    Get PDF
    Drought-induced tree mortality, including large-scale die-off events and increases in background rates of mortality, is a global phenomenon that can directly impact numerous earth system properties and ecosystem goods and services. Tree mortality is particularly of concern because of the likelihood that it will increase in frequency and extent with climate change. Recent plant science advances related to drought have focused on understanding the physiological mechanisms that not only affect plant growth and associated carbon metabolism, but also the more challenging issue of predicting plant mortality thresholds. Although some advances related to mechanisms of mortality have been made and have increased emphasis on interrelationships between carbon metabolism and plant hydraulics, notably few studies have specifically evaluated effects of increasing atmospheric demand for moisture on rates of tree death. In this opinion article we highlight the importance of considering the key risks of future large-scale tree die-off and other mortality events arising from increased VPD. Here we focus on mortality of trees, but our point about the importance of VPD is also relevant to other vascular plants

    Impact of Eastern Redcedar Proliferation on Water Resources in the Great Plains USA—Current State of Knowledge

    Get PDF
    In the Great Plains of the central United States, water resources for human and aquatic life rely primarily on surface runoff and local recharge from rangelands that are under rapid transformation to woodland by the encroachment of Eastern redcedar (redcedar; Juniperus virginiana) trees. In this synthesis, the current understanding and impact of redcedar encroachment on the water budget and water resources available for non-ecosystem use are reviewed. Existing studies concluded that the conversion from herbaceous-dominated rangeland to redcedar woodland increases precipitation loss to canopy interception and vegetation transpiration. The decrease of soil moisture, particularly for the subsurface soil layer, is widely documented. The depletion of soil moisture is directly related to the observed decrease in surface runoff, and the potential of deep recharge for redcedar encroached watersheds. Model simulations suggest that complete conversion of the rangelands to redcedar woodland at the watershed and basin scale in the South-central Great Plains would lead to reduced streamflow throughout the year, with the reductions of streamflow between 20 to 40% depending on the aridity of the climate of the watershed. Recommended topics for future studies include: (i) The spatial dynamics of redcedar proliferation and its impact on water budget across a regional hydrologic network; (ii) the temporal dynamics of precipitation interception by the herbaceous canopy; (iii) the impact of redcedar infilling into deciduous forests such as the Cross Timbers and its impact on water budget and water availability for non-ecosystem use; (iv) land surface and climate interaction and cross-scale hydrological modeling and forecasting; (v) impact of redcedar encroachment on sediment production and water quality; and (vi) assessment and efficacy of different redcedar control measures in restoring hydrological functions of watershed

    Electrical Control of Plasmon Resonance with Graphene

    Full text link
    Surface plasmon, with its unique capability to concentrate light into sub-wavelength volume, has enabled great advances in photon science, ranging from nano-antenna and single-molecule Raman scattering to plasmonic waveguide and metamaterials. In many applications it is desirable to control the surface plasmon resonance in situ with electric field. Graphene, with its unique tunable optical properties, provides an ideal material to integrate with nanometallic structures for realizing such control. Here we demonstrate effective modulation of the plasmon resonance in a model system composed of hybrid graphene-gold nanorod structure. Upon electrical gating the strong optical transitions in graphene can be switched on and off, which leads to significant modulation of both the resonance frequency and quality factor of plasmon resonance in gold nanorods. Hybrid graphene-nanometallic structures, as exemplified by this combination of graphene and gold nanorod, provide a general and powerful way for electrical control of plasmon resonances. It holds promise for novel active optical devices and plasmonic circuits at the deep subwavelength scale
    corecore