

Rainee DeRoin^{1,2}, Chris Zou¹, Adrian Saenz², and Rodney Will¹ ¹ Dept. of Natural Resource Ecology and Management; ²Dept. of Biosystems and Agricultural Engineering Oklahoma State University, Stillwater, OK

Introduction

Redcedar encroachment increases wildfire risk, decreases cattle production, and water quality and quantity.

Redcedar removal followed by planting switchgrass will prevent redcedar re-infesting and provide opportunity for biomass based bio-economy.

It is unknown how this land use change will affect ecosystem services, particularly soil and water resources.

Our **Objective** is to quantify change in water quality and quantity with the land management approach.

Methods

Research was conducted in the Oklahoma State University Cross Timbers Experimental Range (CTER) watersheds (WS). WS18, 19, 20 were grassland and WS 14 - 17 were redcedar encroached before treatment.

Restoring Eastern Redcedar Encroached Watersheds to Prairie or Switchgrass Improves Water Quality and Quantity

Image 1: Redcedar encroachment into grassland

Results

Fig. 1: Runoff at different phase for redcedar watershed

Fig. 3: Runoff at different phase for prairie

Image 2: Mechanical removal of redcedar in CTER site

Image 3: Producing redcedar chips and mulch on site

seeds

Fig. 2: Sediment yield at different phase for redcedar watershed

Fig. 4: Sediment yield at different phase for prairie

Social Impact

- Oklahoma.

Acknowledgements

The United States Department of Agriculture National Institute of Food and Agriculture (Grant Number 2013-05799-1001450), the National Science Foundation (OIA-1301789), and the Oklahoma-Louis Stokes Alliance for Minority Participation Bridge to Doctorate Fellowship (Grant Number HRD 1408748), The McNair (P217A170248-18).

 Switchgrass based biomass production system will provide an alternative land use preventing redcedar from re-infesting grassland;

 Restoration of redcedar encroached watershed will increase runoff but reduce sediment yield;

It will support biomass-based bio-economy;

 Restoring redcedar encroached watersheds and potential biofuel production system will improve environmental quality and potentially the livelihood of rural communities in

