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Drought-induced tree mortality, includ-
ing large-scale die-off events and increases
in background rates of mortality, is a
global phenomenon (Allen et al., 2010)
that can directly impact numerous earth
system properties and ecosystem goods
and services (Adams et al., 2010; Breshears
et al., 2011; Anderegg et al., 2013).
Tree mortality is particularly of concern
because of the likelihood that it will
increase in frequency and extent with
climate change (McDowell et al., 2008,
2011; Adams et al., 2009; McDowell, 2011;
Williams et al., 2013). Recent plant science
advances related to drought have focused
on understanding the physiological mech-
anisms that not only affect plant growth
and associated carbon metabolism, but
also the more challenging issue of predict-
ing plant mortality thresholds (McDowell
et al., 2013). Although some advances
related to mechanisms of mortality have
been made and have increased empha-
sis on interrelationships between car-
bon metabolism and plant hydraulics
(McDowell et al., 2011), notably few stud-
ies have specifically evaluated effects of
increasing atmospheric demand for mois-
ture (i.e., vapour pressure deficit; VPD)
on rates of tree death. In this opin-
ion article we highlight the importance
of considering the key risks of future
large-scale tree die-off and other mortal-
ity events arising from increased VPD.
Here we focus on mortality of trees,
but our point about the importance of
VPD is also relevant to other vascular
plants.

Much research discussion has
stemmed from speculation that warmer
temperatures and implicit increases in
VPD exacerbated a recent widespread die-
off event of one tree species, Pinus edulis,
in the southwestern USA (Breshears et al.,
2005). This speculation was subsequently
supported by theoretical developments
regarding related processes (McDowell
et al., 2008; McDowell, 2011), a con-
trolled experiment (Adams et al., 2009),
and regional empirical and modeling
analyses (Weiss et al., 2012; Jiang et al.,
2013; Williams et al., 2013). Numerous
other studies reached similar conclusions
for other systems (e.g., Allison et al.,
2009; van Mantgem et al., 2009; Arora
et al., 2013; Jiang et al., 2013; Liu et al.,
2013). From a variety of approaches, these
studies collectively concluded that rising
temperature and associated VPD drive
accelerating rates of mortality during
drought. Although the effects of warmer
temperature are receiving increased atten-
tion, effects of changes in VPD per se have
been explicitly considered far less.

To focus on VPD, we return to funda-
mental relationships. Rising global surface
temperature will curvilinearly increase
saturation vapour pressure because
warming increases the evaporation-to-
condensation ratio, causing the gaseous
phase of water to be increasingly favored
(Bohren and Albrecht, 1998). VPD is the
difference between the saturation vapour
pressure and actual vapour pressure. While
increased temperature is often accompa-
nied by increased vapour pressure due

to enhanced evaporation rates, increases
in saturation vapour pressure outpace
increases in actual vapour pressure as long
as relative humidity is less than 100%,
resulting in a curvilinear increase in VPD
(Figure 1A). Consequently as global cli-
mate warms, VPD increases even though
specific humidity is projected to increase
in most regions (Held and Soden, 2006).
Drought induces an additional positive
feedback on VPD due to an increase in the
ratio of sensible to latent heat fluxes caused
by reduced transpiration and evaporation,
thus causing a further rise in surface tem-
perature and hence VPD (Maness et al.,
2013).

Climate-model projections of rapidly
increasing VPD globally may cause pro-
nounced levels of tree stress that may
be unprecedented relative to what mod-
ern forests have evolved under, and for
which landscape management strategies
have been designed (e.g., Williams et al.,
2013). If such stresses trigger associated
widespread mortality, they then also have
major impacts on landscape albedo and
hence energy partitioning, biogeochemical
cycling, regional carbon and water bud-
gets, and the provisioning of ecosystem
services (Adams et al., 2010; Breshears
et al., 2011; Anderegg et al., 2013).
Importantly, warmer temperatures and
associated increases in VPD are two of the
most pronounced climate change trends
of recent decades and may be the climatic
parameters that we can project with great-
est confidence (IPCC, 2007). Therefore the
need to understand the effects of increased
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FIGURE 1 | A conceptual figure illustrating the effect of increased

VPD on the biophysical factors that influence tree physiology,

drought stress, and survival. Higher temperatures increase VPD
non-linearly (A), higher VPD will generally both deplete soil moisture (B)

and increase plant stress though changes in transpiration [C; based on

data from Eamus et al. (2008)], all of which are projected to contribute
to non-linear increases in forest stress [highlighted by the Forest Drought
Severity Index (FDSI), with more negative values corresponding to
increased stress] and resultant widespread regional mortality (D; Williams
et al., 2013).

VPD and temperature on forest stress and
associated mortality is clearly apparent.

An increase in VPD affects both
soil evaporation and plant physiology.
Soil evaporation is affected by phys-
ical relationships with increased VPD
under warmer temperature via Fick’s law:
E = g (VPD), where g is conductance of
the surface boundary layer (Figure 1B).
This causes increased rates of poten-
tial water loss from soils, thus reduc-
ing the amount of plant available water,
which in turn could exacerbate plant water
stress and associated mortality risk. In
addition to this effect on soil evapora-
tion, VPD affects plant physiology directly
through its impact on stomatal closure and
associated impacts on photosynthesis and

carbon metabolism [Figure 1C; example
data from Eamus et al. (2008)], transpi-
ration rate increases with VPD up to a
point (after which it remains high even if
decreasing somewhat with VPD), the net
result of which is likely a further exac-
erbation of plant water stress. As VPD
rises, a series of physiological mechanisms
may occur by which stomata close to
maintain water tension within the xylem
below a critical threshold (Tardieu and
Simonneau, 1998). Such stomatal closure
causes a reduction or cessation of photo-
synthesis, but failure to close stomata may
cause desiccation through excessive water
loss. These relationships were the basis for
the carbon starvation and hydraulic fail-
ure hypotheses (McDowell et al., 2008,

2011): a reduction in photosynthesis, if
prolonged and severe, should cause a
decline in photosynthate available to drive
metabolism and defense against biotic
agents. Alternatively, if stomata remain
relatively open during periods of ele-
vated VPD, this may allow maintenance
of positive photosynthetic rates, but may
allow transpiration to exceed critical rates
causing xylem cavitation—the formation
of embolized vessels through the entry
and expansion of air bubbles that block
water transport (Tyree and Sperry, 1989;
Thomas and Eamus, 1999). If embolized
conduits remain un-repaired, this can lead
to hydraulic failure, or dehydration and
subsequent mortality (McDowell et al.,
2008). Carbon starvation and hydraulic
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failure are likely interactive in driving mor-
tality through multiple pathways (see Box
2, Figure 1 in McDowell et al., 2011),
as supported by recent work for several
species (Anderegg et al., 2012; Adams et al.,
2013; Galvez et al., 2013; Quirk et al., 2013;
Sevanto et al., 2013). Increased VPD can
both increase xylem tensions that lead to
hydraulic failure and inhibit phloem func-
tion, limiting the mobility of carbohydrate
resources to sink tissues, potentially exac-
erbating carbon starvation and preventing
xylem embolism repair (McDowell et al.,
2011).

Note that the VPD effects on phys-
iology described above do not negate
the direct negative impact rising tem-
perature alone can have on plant sur-
vival. Although growth respiration is
reduced during drought (Amthor and
McCree, 1990; Körner, 2003; McDowell,
2011), the increased temperatures asso-
ciated with higher VPD may increase
maintenance respiration, potentially accel-
erating carbon starvation (Adams et al.,
2009). Further, rising temperature may
also increase the speed to reproductive
maturation of biotic agents such as bark
beetles, thus increasing the rate of biotic
attack on vegetation (Raffa et al., 2008).
Recent modeling analysis disaggregated
the effects of VPD and temperature on
tree physiology in Eucalyptus (Eamus et al.,
2013) and demonstrated that increased
VPD (+1.0 or +2.5 kPa above controls)
should have a much larger impact on
tree health (defined as a prolonged loss
of NPP, Net Primary Productivity) than
increased temperature (+2.0 or +5.0 ◦C
above controls). Similarly, in an experi-
mental study, increased VPD associated
with higher temperature led to greater
transpiration and faster mortality dur-
ing drought for tree seedlings common
to the Great Plains forest-grassland eco-
tone of the central United States (Will
et al., 2013). These modeling and exper-
imental results are consistent with recent
studies relating spatial patterns in VPD
anomalies to tree die-off (Weiss et al.,
2009, 2012). Additionally, powerful new
relationships detected among regional tree
growth, mortality and warm-season VPD
portend non-linear increases in forest
stress and associated tree mortality in
the future (Figure 1D, as reflected in the
Forest Drought Severity Index, FDSI, that

includes a term for atmospheric demand;
Williams et al., 2013) Collectively the
physical (Figures 1A,B) and physiological
(Figure 1C) effects of VPD are expected to
contribute to greater water loss rates from
the system and associated increases in tree
drought stress and associated mortality.

The fundamental fine-scale relation-
ships of increased temperature and
associated increased VPD have profound
global-scale implications for the future
distributions of vegetation. VPD and tem-
perature are core constituents of the three
principle climatic determinants of the
distributional patterns of vegetation, as
exemplified in the Holdridge (1967) life-
zone classification scheme: temperature,
rainfall and potential evapotranspiration
(the latter of which is strongly depen-
dent on VPD). The potential for major
redistribution of ecosystem boundaries
following changes in evaporative demand
without concomitant changes in rainfall
is exemplified by the southern boundaries
of boreal forest and aspen parkland in
Canada, which correspond most closely
with climatic (rainfall and atmospheric
water content) moisture regimes (annual
precipitation minus potential evaporation;
Hogg, 1994). In general, there is a paucity
of mortality experiments that manipulate
either temperature or VPD, let alone both
independently, and the former of these
have mostly been limited to Pinus and
Eucalyptus. Needed to compliment more
mechanistic approaches are also exper-
imentally determined climate-mortality
envelopes that are specific to drought-
induced tree mortality. Although much
uncertainty remains about the specifics
of the mechanisms underlying mortal-
ity, our principle point is that the risk
posed by intensifying atmospheric mois-
ture demands to future tree mortality and
associated die-off events remains a critical
but little-studied aspect in this domain.
Additional study is required if we are to
effectively predict and manage the con-
sequences of future climate change and
tree mortality. In summary, we need to
shift focus to the critical amplifying role of
VPD, not just of associated temperature,
in driving tree mortality during drought
because VPD changes impose fundamen-
tal curvilinear physical and physiological
responses. Importantly climate mod-
els consistently predict VPD as well as

temperature to increase in the future and
these trends will almost certainly increase
forest stress, tree mortality, and associ-
ated large-scale tree die-off events in many
regions globally.
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