226 research outputs found

    Fourier's Law in a Quantum Spin Chain and the Onset of Quantum Chaos

    Full text link
    We study heat transport in a nonequilibrium steady state of a quantum interacting spin chain. We provide clear numerical evidence of the validity of Fourier law. The regime of normal conductivity is shown to set in at the transition to quantum chaos.Comment: 4 pages, 5 figures, RevTe

    Time evolution of a quantum many-body system: transition from integrability to ergodicity in thermodynamic limit

    Full text link
    Numerical evidence is given for non-ergodic (non-mixing) behavior, exhibiting ideal transport, of a simple non-integrable many-body quantum system in the thermodynamic limit, namely kicked tVt-V model of spinless fermions on a ring. However, for sufficiently large kick parameters tt and VV we recover quantum ergodicity, and normal transport, which can be described by random matrix theory.Comment: 4 pages in RevTex (6 figures in PostScript included

    High temperature thermal conductivity of 2-leg spin-1/2 ladders

    Full text link
    Based on numerical simulations, a study of the high temperature, finite frequency, thermal conductivity κ(ω)\kappa(\omega) of spin-1/2 ladders is presented. The exact diagonalization and a novel Lanczos technique are employed.The conductivity spectra, analyzed as a function of rung coupling, point to a non-diverging dcdc-limit but to an unconventional low frequency behavior. The results are discussed with perspective recent experiments indicating a significant magnetic contribution to the energy transport in quasi-one dimensional compounds.Comment: 4 pages, 4 figure

    Crossover from Poisson to Wigner-Dyson Level Statistics in Spin Chains with Integrability Breaking

    Full text link
    We study numerically the evolution of energy-level statistics as an integrability-breaking term is added to the XXZ Hamiltonian. For finite-length chains, physical properties exhibit a cross-over from behavior resulting from the Poisson level statistics characteristic of integrable models to behavior corresponding to the Wigner-Dyson statistics characteristic of the random-matrix theory used to describe chaotic systems. Different measures of the level statistics are observed to follow different crossover patterns. The range of numerically accessible system sizes is too small to establish with certainty the scaling with system size, but the evidence suggests that in a thermodynamically large system an infinitesimal integrability breaking would lead to Wigner-Dyson behavior.Comment: 8 pages, 8 figures, Revtex

    Low-temperature transport in Heisenberg chains

    Full text link
    A technique to determine accurately transport properties of integrable and non-integrable quantum-spin chains at finite temperatures by Quantum Monte-Carlo is presented. The reduction of the Drude weight by interactions in the integrable gapless regime is evaluated. Evidence for the absence of a Drude weight in the gapless regime of a non-integrable system with longer-ranged interactions is presented. We estimate the effect of the non-integrability on the transport properties and compare with recent experiments on one-dimensional quantum-spin chains.Comment: accepted for publication (PRL

    Transport in Luttinger Liquids

    Full text link
    We compute the transport properties of one dimensional interacting electrons, also known as a Luttinger liquid. We show that a renormalization group study allows to obtain the temperature dependence of the conductivity in an intermediate temperature range. In this range the conductivity has a power-law like dependence in temperature. At low temperatures, the motion proceed by tunnelling between localized configurations. We compute this tunnelling rate using a bosonization representation and an instanton technique. We find a conductivity σ(T)eβ1/2\sigma(T) \propto e^{-\beta^{1/2}}, where β\beta is the temperature. We compare this results with the standard variable range hopping (VRH) formula.Comment: Proceedings of the EURESCO Conference "Fondamental Problems of Mesoscopic Physics", Granada, Spain (Sept. 2003), to be published by Kluwe

    Transport in the XX chain at zero temperature: Emergence of flat magnetization profiles

    Get PDF
    We study the connection between magnetization transport and magnetization profiles in zero-temperature XX chains. The time evolution of the transverse magnetization, m(x,t), is calculated using an inhomogeneous initial state that is the ground state at fixed magnetization but with m reversed from -m_0 for x0. In the long-time limit, the magnetization evolves into a scaling form m(x,t)=P(x/t) and the profile develops a flat part (m=P=0) in the |x/t|1/2 while it expands with the maximum velocity, c_0=1, for m_0->0. The states emerging in the scaling limit are compared to those of a homogeneous system where the same magnetization current is driven by a bulk field, and we find that the expectation values of various quantities (energy, occupation number in the fermionic representation) agree in the two systems.Comment: RevTex, 8 pages, 3 ps figure

    Magnetothermal transport in the spin-1/2 chains of copper pyrazine dinitrate

    Full text link
    We present experiments on the thermal transport in the spin-1/2 chain compound copper pyrazine dinitrate Cu(C_4 H_4 N_2)(NO_3)_2. The heat conductivity shows a surprisingly strong dependence on the applied magnetic field B, characterized at low temperatures by two main features. The first one appearing at low B is a characteristic dip located at mu_B B ~ k_B T, that may arise from Umklapp scattering. The second one is a plateau-like feature in the quantum critical regime, mu_B |B-B_c| < k_B T, where B_c is the saturation field at T=0. The latter feature clearly points towards a momentum and field independent mean free path of the spin excitations, contrary to theoretical expectations.Comment: 4 pages, 4 figure

    Transport Properties of One-Dimensional Hubbard Models

    Full text link
    We present results for the zero and finite temperature Drude weight D(T) and for the Meissner fraction of the attractive and the repulsive Hubbard model, as well as for the model with next nearest neighbor repulsion. They are based on Quantum Monte Carlo studies and on the Bethe ansatz. We show that the Drude weight is well defined as an extrapolation on the imaginary frequency axis, even for finite temperature. The temperature, filling, and system size dependence of D is obtained. We find counterexamples to a conjectured connection of dissipationless transport and integrability of lattice models.Comment: 10 pages, 14 figures. Published versio
    corecore