26 research outputs found

    Electrocatalytic performance of SiO2-SWCNT nanocomposites prepared by electroassisted deposition

    Get PDF
    “The final publication is available at Springer via http://dx.doi.org/10.1007/s12678-013-0144-3”Composite materials made of porous SiO2 matrices filled with single-walled carbon nanotubes (SWCNTs) were deposited on electrodes by an electroassisted deposition method. The synthesized materials were characterized by several techniques, showing that porous silica prevents the aggregation of SWCNT on the electrodes, as could be observed by transmission electron microscopy and Raman spectroscopy. Different redox probes were employed to test their electrochemical sensing properties. The silica layer allows the permeation of the redox probes to the electrode surface and improves the electrochemical reversibility indicating an electrocatalytic effect by the incorporation of dispersed SWCNT into the silica films.This work was financed by the following research projects: MAT2010-15273 of the Spanish Ministerio de Economia y Competitividad and FEDER, PROMETEO/2013/038 of the GV, and CIVP16A1821 of the Fundacion Ramon Areces. Alonso Gamero-Quijano and David Salinas-Torres acknowledge Generalitat Valenciana (Santiago Grisolia Program) and Ministerio de Economia y Competitividad, respectively, for the funding of their research fellowships.Gamero-Quijano, A.; Huerta, F.; Salinas-Torres, D.; Morallón, E.; Montilla, F. (2013). Electrocatalytic performance of SiO2-SWCNT nanocomposites prepared by electroassisted deposition. Electrocatalysis. 4(4):259-266. https://doi.org/10.1007/s12678-013-0144-3S25926644P. Alivisatos, Nat. Biotechnol. 22, 47 (2004)S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Nature 442, 282 (2006)D.W. Schaefer, R.S. Justice, Macromolecules 40, 8501 (2007)M. Endo, M.S. Strano, P.M. Ajayan, Carbon Nanotubes 111, 13 (2008)C.E. Banks, R.G. Compton, Analyst 131, 15 (2006)R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Science 297, 787 (2002)Y.H. Lin, F. Lu, Y. Tu, Z.F. Ren, Nano Letters 4, 191 (2004)B.R. Azamian, J.J. Davis, K.S. Coleman, C.B. Bagshaw, M.L.H. Green, J. Am. Chem. Soc. 124, 12664 (2002)W. Yang, K. Ratinac, S. Ringer, P. Thordarson, J.G. Gooding, F. Braet, Angew. Chem. Int. Ed. 49, 2114 (2010)C.E. Banks, R.G. Compton, Analyst 130, 1232 (2005)L. Mazurenko, M. Etienne, O. Tananaiko, V. Zaitsev, A. Walcarius, Electrochim. Acta 83, 359 (2012)J.M.P. Paloma Yáñez-Sedeño, J. Riu, F.X. Rius, TrAC Trends in Analytical Chemistry 29, 939 (2010)Z.J. Wang, M. Etienne, S. Poller, W. Schuhmann, G.W. Kohring, V. Mamane, A. Walcarius, Electroanalysis 24, 376 (2012)R. Bandyopadhyaya, E. Nativ-Roth, O. Regev, R. Yerushalmi-Rozen, Nano Letters 2, 25 (2002)C. Park, Z. Ounaies, K.A. Watson, R.E. Crooks, J. Smith, S.E. Lowther, J.W. Connell, E.J. Siochi, J.S. Harrison, T.L.S. Clair, Chem. Phys. Lett. 364, 303 (2002)O. Matarredona, H. Rhoads, Z.R. Li, J.H. Harwell, L. Balzano, D.E. Resasco, Journal of Physical Chemistry B 107, 13357 (2003)L. Vaisman, H. Wagner, G. Marom, Advances in Colloid and Interface Science 128, 37 (2006)Y.C. Xing, Journal of Physical Chemistry B 108, 19255 (2004)J.J. Liang, Y. Huang, L. Zhang, Y. Wang, Y.F. Ma, T.Y. Guo, Y.S. Chen, Adv. Funct. Mater. 19, 2297 (2009)D. Salinas-Torres, F. Huerta, F. Montilla, E. Morallón, Electrochim. Acta 56, 2464 (2011)Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Siegal, P.N. Provencio, Science 282, 1105 (1998)W.Z. Li, S.S. Xie, L.X. Qian, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zhao, G. Wang, Science 274, 1701 (1996)M. Terrones, N. Grobert, J. Olivares, J.P. Zhang, H. Terrones, K. Kordatos, W.K. Hsu, J.P. Hare, P.D. Townsend, K. Prassides, A.K. Cheetham, H.W. Kroto, D.R.M. Walton, Nature 388, 52 (1997)R. Toledano, D. Mandler, Chem. Mater. 22, 3943 (2010)J.H. Rouse, Langmuir 21, 1055 (2005)X.B. Yan, B.K. Tay, Y. Yang, Journal of Physical Chemistry B 110, 25844 (2006)J. Lim, P. Malati, F. Bonet, B. Dunn, J. Electrochem. Soc. 154, A140 (2007)L.D. Zhu, C.Y. Tian, J.L. Zhai, R.L. Yang, Sensors and Actuators B-Chemical 125, 254 (2007)F. Montilla, M.A. Cotarelo, E. Morallón, J. Mater. Chem. 19, 305 (2009)D. Salinas-Torres, F. Montilla, F. Huerta, E. Morallón, Electrochim. Acta 56, 3620 (2011)T. Dobbins, R. Chevious, Y. Lvov, Polymers 3, 942 (2011)R. Esquembre, J.A. Poveda, C.R. Mateo, Journal of Physical Chemistry B 113, 7534 (2009)M.L. Ferrer, R. Esquembre, I. Ortega, C.R. Mateo, F. del Monte, Chem. Mater. 18, 554 (2006)M.J. O'Connell, S. Sivaram, S.K. Doorn, Physical Review B 69, 235415 (2004)C. Domingo, G. Santoro, Opt. Pura Apl 40, 175 (2007)M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Physics Reports 409, 47 (2005)R.L. McCreery, Chem. Rev. 108, 2646 (2008)C.G. Zoski, in Handbook of Electrochemistry, 1st ed (Elsevier, Amsterdam, 2007

    Modified carbon-containing electrodes in stripping voltammetry of metals. Part II. Composite and microelectrodes

    Full text link

    Electrocatalytic reduction of hydrogen peroxide at a stationary pyrolytic graphite electrode surface in the presence of cytochrome c peroxidase: a description based on a microelectrode array model for adsorbed enzyme molecules.

    No full text
    Electrochemical reduction of H2O2 at pyrolytic graphite disc electrodes of radius 2.5 mm occurs at readily accessible potentials (600 mV versus the standard hydrogen electrode) in the presence of yeast cytochrome c peroxidase. Introduction of the enzyme into the electrolyte solution initiates large changes in the ellipsometric angles measured for the electrode-solution interface, consistent with time-dependent enzyme adsorption. This process may be correlated with changes in electrochemical activity. Over the same time course, linear-sweep voltammograms are characterized by a transition from a sigmoidal to a peak-type waveform. It is proposed that the time-dependent behaviour may be rationalized by use of a microscopic model for substrate mass transport, in which the two-electron reduction of peroxide occurs at electrocatalytic sites consisting of adsorbed enzyme molecules. A voltammetric theory based on treating the adsorbed redox enzymes as an expanding array of microelectrodes is in excellent agreement with experiment
    corecore