211 research outputs found

    Boosting the Battery Life of Wearables for Health Monitoring Through the Compression of Biosignals

    Get PDF
    Modern wearable Internet of Things (IoT) devices enable the monitoring of vital parameters such as heart or respiratory (RESP) rates, electrocardiography (ECG), photo-plethysmographic (PPG) signals within e-health applications. A common issue of wearable technology is that signal transmission is power-demanding and, as such, devices require frequent battery charges and this poses serious limitations to the continuous monitoring of vitals. To ameliorate this, we advocate the use of lossy signal compression as a means to decrease the data size of the gathered biosignals and, in turn, boost the battery life of wearables and allow for fine-grained and long-term monitoring. Considering 1-D biosignals such as ECG, RESP, and PPG, which are often available from commercial wearable IoT devices, we provide a thorough review of existing biosignal compression algorithms. Besides, we present novel approaches based on online dictionaries, elucidating their operating principles and providing a quantitative assessment of compression, reconstruction and energy consumption performance of all schemes. As we quantify, the most efficient schemes allow reductions in the signal size of up to 100 times, which entail similar reductions in the energy demand, by still keeping the reconstruction error within 4% of the peak-to-peak signal amplitude. Finally, avenues for future research are discussed. © 2014 IEEE

    Interlocking Transcriptional Feedback Loops Control White-Opaque Switching in Candida albicans

    Get PDF
    The human pathogen Candida albicans can assume either of two distinct cell types, designated “white” and “opaque.” Each cell type is maintained for many generations; switching between them is rare and stochastic, and occurs without any known changes in the nucleotide sequence of the genome. The two cell types differ dramatically in cell shape, colony appearance, mating competence, and virulence properties. In this work, we investigate the transcriptional circuitry that specifies the two cell types and controls the switching between them. First, we identify two new transcriptional regulators of white-opaque switching, Czf1 and white-opaque regulator 2 (Wor2). Analysis of a large set of double mutants and ectopic expression strains revealed genetic relationships between CZF1, WOR2, and two previously identified regulators of white-opaque switching, WOR1 and EFG1. Using chromatin immunoprecipitation, we show that Wor1 binds the intergenic regions upstream of the genes encoding three additional transcriptional regulators of white-opaque switching (CZF1, EFG1, and WOR2), and also occupies the promoters of numerous white- and opaque-enriched genes. Based on these interactions, we have placed these four genes in a circuit controlling white-opaque switching whose topology is a network of positive feedback loops, with the master regulator gene WOR1 occupying a central position. Our observations indicate that a key role of the interlocking feedback loop network is to stably maintain each epigenetic state through many cell divisions

    Severe Heterotopic Ossification in the Skeletal Muscle and Endothelial Cells Recruitment to Chondrogenesis Are Enhanced by Monocyte/Macrophage Depletion

    Get PDF
    Altered macrophage infiltration upon tissue damage results in inadequate healing due to inappropriate remodeling and stem cell recruitment and differentiation. We investigated in vivo whether cells of endothelial origin phenotypically change upon heterotopic ossification induction and whether infiltration of innate immunity cells influences their commitment and alters the ectopic bone formation. Liposome-encapsulated clodronate was used to assess macrophage impact on endothelial cells in the skeletal muscle upon acute damage in the ECs specific lineage-tracing Cdh5CreER(T2):R26REYFP/dtTomato transgenic mice. Macrophage depletion in the injured skeletal muscle partially shifts the fate of ECs toward endochondral differentiation. Upon ectopic stimulation of BMP signaling, monocyte depletion leads to an enhanced contribution of ECs chondrogenesis and to ectopic bone formation, with increased bone volume and density, that is reversed by ACVR1/SMAD pathway inhibitor dipyridamole. This suggests that macrophages contribute to preserve endothelial fate and to limit the bone lesion in a BMP/injury-induced mouse model of heterotopic ossification. Therefore, alterations of the macrophage-endothelial axis may represent a novel target for molecular intervention in heterotopic ossification

    Phenotypic Variation and Bistable Switching in Bacteria

    Get PDF
    Microbial research generally focuses on clonal populations. However, bacterial cells with identical genotypes frequently display different phenotypes under identical conditions. This microbial cell individuality is receiving increasing attention in the literature because of its impact on cellular differentiation, survival under selective conditions, and the interaction of pathogens with their hosts. It is becoming clear that stochasticity in gene expression in conjunction with the architecture of the gene network that underlies the cellular processes can generate phenotypic variation. An important regulatory mechanism is the so-called positive feedback, in which a system reinforces its own response, for instance by stimulating the production of an activator. Bistability is an interesting and relevant phenomenon, in which two distinct subpopulations of cells showing discrete levels of gene expression coexist in a single culture. In this chapter, we address techniques and approaches used to establish phenotypic variation, and relate three well-characterized examples of bistability to the molecular mechanisms that govern these processes, with a focus on positive feedback.

    Metal Hydrides Form Halogen Bonds: Measurement of Energetics of Binding

    Get PDF
    The formation of halogen bonds from iodopentafluorobenzene and 1-iodoperfluorohexane to a series of bis(η5-cyclopentadienyl)metal hydrides (Cp2TaH3, 1; Cp2MH2, M = Mo, 2, M = W, 3; Cp2ReH, 4; Cp2Ta(H)CO, 5; Cp = η5-cyclopentadienyl) is demonstrated by 1H NMR spectroscopy. Interaction enthalpies and entropies for complex 1 with C6F5I and C6F13I are reported (ΔH° = −10.9 ± 0.4 and −11.8 ± 0.3 kJ/mol; ΔS° = −38 ± 2 and −34 ± 2 J/(mol·K), respectively) and found to be stronger than those for 1 with the hydrogen-bond donor indole (ΔH° = −7.3 ± 0.1 kJ/mol, ΔS° = −24 ± 1 J/(mol·K)). For the more reactive complexes 2–5, measurements are limited to determination of their low-temperature (212 K) association constants with C6F5I as 2.9 ± 0.2, 2.5 ± 0.1, <1.5, and 12.5 ± 0.3 M–1, respectively

    The Set3/Hos2 Histone Deacetylase Complex Attenuates cAMP/PKA Signaling to Regulate Morphogenesis and Virulence of Candida albicans

    Get PDF
    Candida albicans, like other pleiomorphic fungal pathogens, is able to undergo a reversible transition between single yeast-like cells and multicellular filaments. This morphogenetic process has long been considered as a key fungal virulence factor. Here, we identify the evolutionarily conserved Set3/Hos2 histone deacetylase complex (Set3C) as a crucial repressor of the yeast-to-filament transition. Cells lacking core components of the Set3C are able to maintain all developmental phases, but are hypersusceptible to filamentation-inducing signals, because of a hyperactive cAMP/Protein Kinase A signaling pathway. Strikingly, Set3C-mediated control of filamentation is required for virulence in vivo, since set3Δ/Δ cells display strongly attenuated virulence in a mouse model of systemic infection. Importantly, the inhibition of histone deacetylase activity by trichostatin A exclusively phenocopies the absence of a functional Set3C, but not of any other histone deacetylase gene. Hence, our work supports a paradigm for manipulating morphogenesis in C. albicans through alternative antifungal therapeutic strategies

    The Nuclear Protein Sge1 of Fusarium oxysporum Is Required for Parasitic Growth

    Get PDF
    Dimorphism or morphogenic conversion is exploited by several pathogenic fungi and is required for tissue invasion and/or survival in the host. We have identified a homolog of a master regulator of this morphological switch in the plant pathogenic fungus Fusarium oxysporum f. sp. lycopersici. This non-dimorphic fungus causes vascular wilt disease in tomato by penetrating the plant roots and colonizing the vascular tissue. Gene knock-out and complementation studies established that the gene for this putative regulator, SGE1 (SIX Gene Expression 1), is essential for pathogenicity. In addition, microscopic analysis using fluorescent proteins revealed that Sge1 is localized in the nucleus, is not required for root colonization and penetration, but is required for parasitic growth. Furthermore, Sge1 is required for expression of genes encoding effectors that are secreted during infection. We propose that Sge1 is required in F. oxysporum and other non-dimorphic (plant) pathogenic fungi for parasitic growth
    corecore