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Abstract—Modern wearable IoT devices enable the monitoring 
of vital parameters such as heart or respiratory rates (RESP), 
electrocardiography (ECG), photo-plethysmographic (PPG) sig-
nals within e-health applications. However, a common issue 
of wearable technology is that signal transmission is power-
demanding and, as such, devices require frequent battery charges 
and this poses serious limitations to the continuous monitoring 
of vitals. To ameliorate this, we advocate the use of lossy signal 
compression as a means to decrease the data size of the gathered 
biosignals and, in turn, boost the battery life of wearables and 
allow for fine-grained and long-term monitoring. Considering 
one dimensional biosignals such as ECG, RESP and PPG, which 
are often available from commercial wearable IoT devices, we 
provide a throughout review of existing biosignal compression 
algorithms and introduce novel approaches based on online 
dictionaries, elucidating their operating principles and providing 
a quantitative assessment of their compression, reconstruction 
and energy consumption performance. As we quantify, the most 
efficient schemes allow reductions in the signal size of up to 100 
times, which entail similar reductions in the energy demand, by 
still keeping the reconstruction error within 4% of the peak-to-
peak signal amplitude. Avenues for future research are finally 
discussed.

Index Terms—wearable IoT devices, biomedical signal process-
ing, signal compression, sparse autoencoders, pattern recognition, 
energy efficiency.

I. INTRODUCTION

INTERNET of Things (IoT) technology enables objects to

sense the physical environment and to seamlessly integrate

the gathered data into sophisticated Internet applications that 
allow for substantial improvements of human activities at 
large. The focus of this paper is on human sensing [1] 
through wearable IoT devices, such as smart watches, chest 
straps or wristbands, which can be used to help address 
the individual health and the fitness needs of the users [2]. For 
instance, wearables can be utilized to gather and share 
information about the status of outpatients, making it possible 
to collect, record and analyze new data streams faster and more 
accurately. This allows for an improved access to healthcare, an 
increase of its quality and ultimately, a reduction in its cost. 
Telehealth systems could deliver care to people in remote 
locations and provide streams of accurate data for making 
better care decisions (e.g., in terms of therapy adjustments or 
prompt interventions). In addition, these systems are expected 
to have a big impact on the field of rehabilitation, where, e.g., 
users may wear e-textile systems for remote, continuous 
monitoring of physiological and movement data [3]. Through 
IoT technology, a large number of physiological signals can be 
monitored including oxygen saturation, blood pressure, heart
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rate, respiration rate, glucose level [2], [4] and user activities 
such as walking, standing, sleeping, etc., can be inferred [5]. 
A recent survey of wearable devices and their use is offered 
in [2], whereas rehabilitation systems are discussed in [3].

We look at an IoT scenario for e-health, where wearables are 
utilized to collect physiological signals, preprocess and 
transmit them over their wireless interface for their final storage 
and manipulation via backend server infrastructures. Within 
this context, we are concerned with the design of online signal 
compression algorithms, so that the gathered signals can be 
effectively stored in the limited memory space of wearables and 
conveniently transmitted over their radio interface. Ideally, we 
would like this software to adapt to the signals being sampled, 
by being prompt when required by the application and gently 
go into some power saving mode when the signals exhibit 
regular patterns. This means that, high resolution should be 
provided when the user is up to some dynamic activity and 
wants to track that or when a critical behavior is detected. 
Toward this end, we advocate the use of lossy compression as a 
means to reduce the space taken by the collected biosignals 
and, at the same time, to save battery power through a reduced 
transmission time. This amounts to compressing the 
physiological data directly at its source.

As for the physiological signals of interest, we consider one 
dimensional and quasi-periodic biomedical signals as those 
provided by typical sensors in chest straps or wristbands, i.e., 
electrocardiography (ECG), photo-plethysmographic (PPG) 
and respiratory (RESP) signals. ECG is probably the most 
important among them for the diagnosis of heart malfunctions 
and IoT technologies are expected to be very useful to as-

sess cardiac conditions within patient-monitoring applications. 
Commercial devices such as the Bioharness 3 from Zephyr 
Technology Corporation [6] can be utilized to measure this 
type of signal. RESP signals are also very relevant and can 
be obtained from chest straps [7] or rubber straps [8] placed 
around the abdomen to, e.g., assess the status of outpatients 
affected by chronic respiratory failure and allow monitoring 
them from home. PPG is often available in low-cost IoT 
devices for the consumer market (such as smart watches or 
wristbands designed for fitness applications), see the Angel 
sensor wristband [9]. PPG can be used to estimate heart-

rate [10] and recent studies indicate that blood pressure can 
also be inferred [11].

We believe that, despite the focus and hype on wearable 
technology, research on data processing algorithms for wear-

able IoT devices is still in its infancy and most still has to 
be done to take full advantage of this portable technology, 
especially in the medical field. In past research, a large 
number of compression algorithms were proposed for ECG,
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but signal compression has never been applied to RESP or

PPG. Moreover, performance assessments were only carried

out for quality of compression and reconstruction, whereas

the energy consumption aspect has often been neglected.

Instead, we stress that energy should be sparingly used by

the software running on wearables, as these devices are often

battery operated and, in turn, their energy consumption is a key

consideration. Also, to the best of the authors’ knowledge, no

quantitative comparison among existing solutions can be found

in the literature and, due to this, it is unclear which algorithms

are best suited for use in wearable devices.

In this paper, we aim at filling these gaps. First, in Section II

we present a taxonomy of popular signal compression schemes

from the literature, touching upon linear approximations [12],

[13], Fourier [14], Wavelet [15] transforms and novel com-

pression techniques based on compressive sensing [16], [17]

and denoising autoencoders [18].

A novel compression architecture based on vector quan-

tization and pattern recognition [19] is proposed in Sec-

tion III-A, where a suitable codebook (or dictionary) is built

and maintained in an online fashion to efficiently represent

data patterns. Compression is achieved as codebook indices are

sent to the decompressor in place of the original time series.

Despite its simplicity, this technique is found to be appealing

due to its excellent performance in the high compression

regime. The other selected algorithms from the literature

are detailed in Section III and a comparative performance

evaluation of all the considered compression approaches is

carried out in Section IV, where we quantify their compression

efficiency, signal reconstruction fidelity and, most importantly,

their energy consumption. Also, we estimate the battery time

improvement due to the adoption of the discussed compression

technology for continuous monitoring applications.

Finally, our conclusions are presented in Section V, along

with a discussion of open research issues.

To summarize, the main contributions of this paper are:

• A taxonomy of existing signal compression schemes that

are amenable to implementation on wireless wearable IoT

devices.

• A simple but effective dictionary-based approach to the

online classification and compression of biosignals, along

with its validation.

• A detailed performance evaluation of the considered com-

pression schemes in terms of reconstruction error, energy

consumption (isolating the energy required for compres-

sion and transmission) and compression efficiency when

applied to ECG, RESP and PPG signals.

• A discussion of open areas for improvement and new

research avenues.

II. TAXONOMY OF LOSSY COMPRESSION SCHEMES

In the last few years, a great deal of work has been carried

out on tools for the efficient ECG signal analysis, facial image

recognition or the identification of fingerprints acquired by a

cell phone, see [20]. PPG is being intensively investigated for

the estimation of the heart rate [10] and motion data is being

used for activity detection [21]. Nevertheless, apart from ECG,

little has been done regarding the compression of other signals,

such as PPG, RESP, etc. In this taxonomy, we first focus on

ECG and then elaborate on the use of compression for other

signal types.

The two most important tasks to be accomplished in

the ECG domain are 1) QRS complex detection and 2)

signal compression. As per QRS detection, it is crucial to

split the ECG time series into heart beat segments (one

segment per beat) as this allows the fine-grained assessment

of inter-beat signal features, which are useful to detect

certain pathologies. Note that ECG can be efficiently split

into beat segments as it is a quasi-periodic time series

exhibiting recurrent patterns. As per signal compression, we

emphasize that wearable devices are energy and memory

constrained and, as such, minimizing the amount of data

to store and send is an important consideration. As an

example, a typical sampling rate of 250 samples per second

with 12 bits per sample (e.g., from a Zephyr’s Bioharness

device) leads to 32.4 Mbytes of data for a full day. As we

will see below, compression algorithms can easily reduce

this number by 70 times to about 463 kbytes, leading to

much higher efficiencies in terms of memory and transmission.

1) QRS complex detection has been extensively studied in

the literature. Several methods were proposed to detect QRS

complexes and to enhance their features. The importance

of QRS enhancement has been demonstrated to detect the

QRS complex [22]. In particular, amplitude thresholding [23],

first and second derivative methods [24], mathematical

morphology [25], [26], filter banks [27], and wavelet

transform techniques [28] are among the methods used for

the enhancement of the QRS complex. The QRS detection is

instead usually performed with a combination of techniques

such as thresholding [23], [25], neural networks [29], wavelet

transform [30], matched filters [31]. These techniques are of

foremost importance as they split the ECG time series into

segments (i.e., the data points between subsequent heartbeats),

which are then utilized for the subsequent estimation of the

pulse, and for the compression of the ECG trace.

2) Signal compression. Quite a few lossy and lossless

compression algorithms for ECG signals have been proposed

in the literature in the last decades. Typically, they can be

classified into three main categories:

• Time domain processing: within this class we have

AZTEC [32], CORTES [33] and Lightweight Temporal

Compression (LTC) [12]. AZTEC and CORTES achieve

compression by discarding some of the signal samples

and applying a linear approximation, whereas LTC ap-

proximates the original time series through piecewise

linear segments, where the two end points of a segment

are sent in place of the points in between. As we show

in Section IV, in spite of its simplicity, LTC closely

matches the performance of Principal Component Anal-

ysis (PCA) [13], [34].

• Transform based coding: these exploit transformations

such as Fast Fourier Transform (FFT) [14], Discrete
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Cosine Transform (DCT) [35] and Discrete Wavelet

Transform (DWT) [15]. The rationale behind them is to

represent the signal in a suitable transform domain and

select a number of transform coefficients to be sent in

place of the original samples. The amount of compression

depends on the number of coefficients that are selected,

the representation accuracy depends on how many and

which coefficients are retained. Although the schemes

belonging to this class have good compression capabil-

ities, their computational complexity is often too high

for wearable devices [36]. Lightweight implementations

are possible and are considered in the present paper.

However, simpler linear and dictionary based algorithms

have better performance in terms of reconstruction error

as we show in Section IV.

• Parametric techniques: these schemes use neural

networks [37], vector quantization [38], Compressed

Sensing (CS) [16] and pattern matching [39]. Their

rationale is to process the temporal series to obtain

some kind of knowledge and use it to predict the signal

behavior. Recently, denoising autoencoders [18] have

been proposed as universal approximators of biosignal

patterns and have been shown to provide excellent

compression performance and to have much smaller

computational costs than competing algorithms. This is

a field with limited investigation up to now. Also, these

algorithms have promising capabilities for the extraction

of signal features.

Despite these developments, we recall that no systematic

comparison was carried out in the existing literature and, more

than that, the proposed algorithms were not evaluated in terms

of their energy expenditure. This is of course very important

for wearables, which are battery operated and thus call for

algorithms that are at the same time extremely effective and

computationally cheap.

In addition, besides ECG, recent advances in technology

for wearable devices have made it possible to efficiently

collect and analyze other signals such as PPG, motion and

respiration through body worn sensor technologies [40]. The

PPG signal can be a powerful diagnostic tool due to simple,

portable, and low-cost technology available for its fast, easy,

and reliable acquisition and can be non-intrusively measured

using wristbands or smart-watches. An increasing number of

works in the literature deal with the extraction of physiological

parameters from the PPG signal such as heart rate, blood

pressure, blood oxigen saturation, and respiration [11], [41],

[42]. Nevertheless, to the best of our knowledge no algorithms

have been proposed so far for the compression of these signals.

Note that with future application developments, besides the

calculation of selected features or health indicators right on the

mobile devices, users or doctors may want to fully monitor the

vitals, which could be sent to smartphones or control centers

for further elaboration so as to provide a fine-grained assess-

ment of the patient’s condition, e.g., to assess the evolution or

occurrence of a certain pathology. In this case, compressed but

accurate representations of vital signals from heterogeneous

sensor technology are expected to be very useful.

III. SIGNAL COMPRESSION ALGORITHMS

Next, we detail the selected signal compression algorithms

for quasi-periodic biosignals, by first presenting a novel tech-

nique based on the online construction of a dictionary to

represent input patterns. The compression methods that we

describe below are based on differing paradigms. In fact, some

use the degree of similarity (correlation) across subsequent

patterns (or segments), whereas others consider the correlation

within the same segment. We refer to the former approach to

as “inter-segment correlation” based compression, whereas for

the latter we use the term “intra-segment correlation”. The

algorithms belonging to the inter-segment class are: online

dictionary, vector quantization and autoencoders, whereas al-

gorithms based on principal component analysis, LTC, discrete

cosine and wavelet transforms exploit intra-segment correla-

tion properties. The implementation of compressive sensing

that is considered in this paper belongs to both classes.

A. Online Dictionary (OD)

In this section, we propose a dictionary based compression

algorithm based on the concept of motif extraction [43] and

pattern recognition. Its building blocks are shown in Fig. 1 and

explained in what follows. Although the scheme is simple (it

consists of a single pass vector quantization without codeword

reclustering) it provides excellent performance in the high

compression regime and its analysis sheds some light on the

desirable properties that a compression scheme should have,

allowing the assessment of the pitfalls of offline dictionary

based schemes and the identification of future research direc-

tions, as we discuss in Sections IV and V.

The algorithm belongs to the inter-segment correlation

class and can be applied to the biomedical signals exhibiting

recurrent patterns such as ECG, photo-plethysmographic

traces (PPG), arterial blood pressure (ABP), respiratory

signals (RESP), etc. The idea is that recurrent patterns can

be efficiently identified and used to construct, at runtime, a

codebook (also referred to as dictionary). This codebook is

built and maintained by the compressor at the transmitter side

and has to be synchronized with that at the decompressor at

the receiver. The compression of biosignals is achieved by

sending, for each input pattern, the corresponding index in the

codebook, in place of the original data points. We achieved

this through several processing functions, as shown in Fig. 1,

namely: 1) a passband filter, 2) a peak detector, 3) a segment

extractor, 4) pattern matching and 5) a codebook manager.

1) Passband filtering: as a first step, we use a passband

filter to remove artifacts such as high frequency noise and

the DC component. For ECG, this filter operates in the

band [8, 20] Hz, although these can be changed to best suit

other signal types. Here, we implemented the third-order

Butterworth filter of [44].

2) Peak detection: with this algorithm we detect the position

of the main peaks in the time series. For ECG, these
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correspond to the heart beats. To this end, we have adopted

the technique of [45], which has been conceived for ECG

signals but can be easily modified to effectively work with

PPG or respiratory traces. This technique is self-tuning and

optimizes itself based on the input data sampling rate. We

considered this scheme as it is fast and lightweight and thus

suitable for use in wearable and energy constrained devices.

3) Segment extractor: once the peaks are detected, we

consider the data samples between subsequent peaks. These

constitute the input segments for our compressor algorithm.

Note that, unlike the common practice of positioning the

segments so that the peaks (heart beats) are in their center, we

define a segment as the data points between subsequent peaks.

Hence, all segments are normalized according to a predefined

length of W samples, which is the same size of the codewords

in the dictionary. This is accomplished by re-stretching the

segment length to W samples through interpolation (this

block is referred to as “period normalization” in Fig. 1). While

in principle any interpolation technique can be used, such as

quadratic or spline based, in our implementation we utilized

a simple linear technique as we found it sufficiently accurate

while also being computationally inexpensive. Working with

such segments allows using machine learning algorithms for

the construction of the codebook, as we detail shortly.

4) Pattern matching: this block takes the current input

segment and checks whether this matches one of the

codewords in the codebook (dictionary), which is built and

maintained at runtime as we explain in point 5) below.

Several matching criteria are possible. One of such criteria

may be Dynamic Time Warping (DTW) [46], which has been

extensively and successfully used in the literature to compare

patterns of different length and can also be implemented in

linear time [47]. However, we experimented with the DTW

metric and we found it inadequate for ECG signals – the

main problem is that this metric is by construction unable to

preserve the position of the inner peaks in the compressed

representations. Thus, in this work we resized each segment

to a common length, as explained above, and checked for

the best matching codeword using through a suitable distance

function, as we explain next.

5) Codebook manager: this block has a key role in the pro-

posed online compression scheme. It is loosely based on vector

quantization [48] and has two main functions: 1) to maintain a

consistent and representative codebook (dictionary) and 2) to

encode input patterns into the corresponding indices from the

codebook. Let zzzt be the segment provided by the segment ex-

traction block at the generic time t = 0, 1, 2, . . . (discrete time

is assumed, corresponding to the arrival of a new segment).

With Ct = {ccc1, . . . , cccN} we indicate the codebook at time t,
where ccci, i = 1, . . . , N , are the codewords therein. Segment

zzzt is remapped into a new segment xxxt of length W samples

as described above, where size(ccci) = size(xxxt) = W , for

i = 1, . . . , N . The new segment xxxt is obtained using linear

resampling and removing offset ot and gain gt from zzzt (see

equations (5)–(7) of [43]). Thus, a suitable distance function

segment 
length

gain and
offset

peak 
detection

segment
extractor

period
normalization

physiological
signal

filtering

preprocessing
chain

Y

index
codeword

found

add codeword 
to codebook

create new 
codeword

new 
codeword

+ index

codebook manager

N

pattern
matching

calculate
G/O

Fig. 1: Online codebook-based compression scheme.

d(xxxt, ccci) is evaluated for all codewords ccci in the codebook 
and the one with the minimum distance, with index i⋆, is 
picked. Now, if d(xxxt, ccci⋆ ) ≤ ε, codeword ccci⋆ is deemed a good 
representative for the current segment zzzt, otherwise xxxt is added 
to the codebook as a new codeword, where with i⋆ we mean 
the associated index. ε is a tunable parameter that we use to 
control the signal reconstruction fidelity at the decompressor. 
Finally, the index i⋆ is sent in place of the full segment, along 
with ot, gt and the original segment length, ℓt. The whole 
process is detailed in Fig. 1 (codebook manager block): if a 
match for zzzt is found in the codebook (i.e., a codeword 
providing a sufficiently good accuracy, according to ε), then the 
corresponding index is sent over the transmission channel, 
along with the original segment length, its offset and gain 
parameters. These quantities correspond to the compressed bit-

stream, which is used at the decompressor to approximate the 
original time series by reversing each operation. Specifically, 
the decompressor applies three transforms to codeword i⋆ from 
the codebook: renormalization with respect to offset ot and 
gain gt and resampling according to the actual segment length 
ℓt. Otherwise, if no match is found for zzzt at the compressor, 
this segment is added to the codebook as a new codeword and 
its normalized version (W samples) and the corresponding 
index are transmitted to the decoder so that the dictionary at 
the sender and that at the receiver remain synchronized at all
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Fig. 2: Diagram of the GSVQ compression technique.

times.

We remark that several distance functions can be used in

the codebook manager, the L∞-norm has been considered for

the results in this paper as it performed satisfactorily across a

large range of signals.

According to our numerical results, as we show in Sec-

tion IV, the number of codewords in the dictionary increases

with decreasing ε but it tends to converge as time goes on. So

the accuracy parameter ε also directly affects the dictionary

size and, in turn, the memory requirements of the proposed

algorithm. In case the codebook shall grow larger than the

allowed memory space, the removal of codewords from the

codebook can be implemented based on last used timestamps.

B. Gain-Shape Vector Quantization (GSVQ)

In this section we review the Gain-Shape Vector Quan-

tization (GSVQ) method of [38]. The rationale behind this

algorithm is to exploit the information redundancy among ad-

jacent heartbeats by segmenting the ECG signal into segments

and normalizing the period to a fixed length and amplitude.

The normalized heartbeats are then used to build a dictionary

having a fixed number of codewords K, through the Linde-

Buzo-Gray algorithm [49]. While the general compression

principle (i.e., inter-segment correlation) is similar to that

in our online dictionary based scheme, GSVQ builds the

codebook through an offline training phase.

Once the dictionary is obtained, the method associates each

normalized heartbeat with the closest codeword, and sends

the codeword index in place of the original time series. The

algorithm also encodes the offset, the gain, and the length of

the original segment, see Fig. 1. As a last step, the encoder

calculates the residual, i.e., the difference between the current

heartbeat (i.e., ECG segment) and the selected codeword,

and uses the AREA algorithm [50], an adaptive sampling

scheme for one dimensional signals, which obtains additional

information to increase the quality of reconstruction. The

principle behind the residual encoding phase is to encode and

let xxx t and xxx ˜t˜

send a small number of significant points so as to bound the 
reconstruction error.

The decoder, upon receiving an encoded packet, retrieves 
the corresponding codeword from its local copy of the dictio-

nary, performs a denormalization using the gain, the offset, and 
the length, and adds the residual stream to the reconstructed 
signal, see Fig. 2. As we shall see below, GSVQ performance 
predominantly depends on its residual encoding phase. The 
threshold used for residual encoding is in fact the main 
responsible for the amount of data to be transmitted, affecting 
the performance in terms of compression, reconstruction error, 
and energy efficiency.

C. Principal Component Analysis (PCA)

The goal of Principal Component Analysis (PCA) [13] is 
to shrink the information provided by a large set of correlated 
variables into a set of principal components with lower dimen-

sionality. Each principal component is computed as a linear 
combination (linear transform) of the original variables, and 
the combination weights are chosen so that the components are 
mutually uncorrelated. This technique has been successfully 
applied in a multitude of applications, including ECG signal 
compression [34].

Before applying PCA, the biomedical signal goes through 
the preprocessing chain of Fig. 1, i.e., filtering, peak detection 
and segment extraction, where at time t = 0, 1, 2, . . . the 
last block normalizes each input segment zzzt to a common 
length of W samples. The new segment is then stored into a
vect

µµµ
or xxxt

=
∈
E
R

[

W

xxx ]
and is 

RR
f

R
ed t

=
o th

E
e

[xxx
PC

xxx
A
T 

encoder. Specifically,

t ] respectively be the

mean of xxxt and its covariance matrix, with x̃xxt = xxxt − µµµxxx.

PCA amounts to apply an orthonormal linear transformation

ΨΨΨ = [ψψψ1, . . . ,ψψψW ] to x̃xxt, so that the elements w1, . . . , wW of

the principal component vector www = ΨΨΨT x̃xxt = ΨΨΨT (xxxt − µµµxxx)
are mutually uncorrelated. It can be shown that the i-th
principal component is obtained as wi = ψψψix̃xxt, where ψψψi is

the eigenvector corresponding to the i-th largest eigenvalue

of RRRxxx, for i = 1, . . . ,W . The set of eigenvectors corre-

sponding to the W principal components is obtained solving

RRRxxxΨΨΨ = ΨλΨλΨλ for ΨΨΨ, where λλλ is a diagonal matrix containing

the eigenvalues λ1, . . . , λW , placed in decreasing order. As

the theoretical covariance matrix RRRxxx is difficult to compute,

a matrix XXX ∈ R
W×m is built by stacking m successive ECG

segments: their sample mean µ̂µµxxx and their sample covariance

matrix R̂RRxxx = (XXXXXXT )/m ∈ R
W×W respectively replace µµµxxx

and RRRxxx for the calculation of the eigenvectors.

According to the above discussion, we can write

xxxt = µµµxxx +ΨΨΨwww and, if the signal is sufficiently correlated,

only a fraction of the weights in www suffices to accurately

describe the input vector xxxt. Compression is thus achieved by

applying the PCA transform and sending the desired number

h of principal components, i.e., the first h weights in www, with

h ≤ W . In Section III-D, we follow a similar rationale by

using a particular neural network instance called autoencoder,

which practically acts as a non-linear PCA [51].
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...

xW

+1
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g(·)

g(·)

+1

w
(2)
11 y1

y2

...

yW

Fig. 3: Graphical representation of an autoencoder: input and

output layers have the same dimension W , whereas the com-

pression layer has h = 2 neurons. g(·) : R → R is assumed to

be the logistic activation function g(z) = (1 + exp(−z))−1.

D. Autoencoders (AE)

An autoencoder [52] is a neural network where input and

output layers have the same dimension W , whereas the deepest

hidden layer has a smaller dimension h, with h < W , as we

show in Fig. 3. With w
(1)
ij (w

(2)
ij ) we indicate the autoencoder

weights from neuron i to neuron j of the input (output) layer.

Here, autoencoders are used as a non-linear dimensionality

reduction technique to compactly represent the information in

the original segments (of size W ) into a much smaller space

(ideally h≪W neurons).

The training of this neural network is accomplished through

an unsupervised learning algorithm that uses a number of

training examples xxx ∈ R
W that are placed at the input of

the autoencoder. Specifically, backpropagation is executed by

setting the output yyy = xxx so that the neural network weights

w
(1)
ij , w

(2)
ij are adjusted for the autoencoder to behave as an

identity function. In this work, we consider the approach

of [18] where the authors use denoising autoencoders [53]

to approximate the input biomedical patterns.

Once the autoencoder is trained to represent the input

data, weights w
(1)
ij fully specify the compressor (encoder),

whereas w
(2)
ij specify the decompressor (decoder), see Fig. 3.

Signal compression is achieved by applying the preprocessing

chain of Fig. 1, i.e., filtering, peak detection and segment

extraction. Note that the last block also normalizes each

segment to a common length of W samples. Each of such

segments is inputted to the encoder section of the autoencoder,

which returns the h values associated with the neurons in

the compression layer. These h values correspond to the

compressed representation of the current segment and are sent

to the decompressor along with the original segment length.

Finally, the decompressor at the receiver uses the values of

these h inner neurons, along with weights w
(2)
ij , to obtain

the reconstructed W -sample vector yyy through the decoder of

Fig. 3. yyy is finally resized to the original segment length.

We remark that AE also belongs to the inter-segment cor-

relation class of algorithms as it exploits the fact that patterns

across different segments have a quasi-periodic behavior.

E. Compressive Sensing (CS)

Compressive sensing (CS) is a recently proposed theory [54]

[55] to efficiently acquire and reconstruct a signal, by solving 
ill-posed linear systems of equations. This technique is based 
upon the premise that the signal of interest is sparse in some

transform domain. This means that, the original signal can 
be represented in a domain where only a few transform

coefficients are required for its full description. To be more

specific, let xxx ∈ RW be an W -sized vector and assume that 
this vector can be represented in a K-sparse domain through

the sparse vector sss, where only K ≪ W elements of sss are non-
zero, i.e., vector sss is K-sparse in this domain. If we refer to
the sparsifi

ΦΦΦ
catio

R

n
m

b
×

a
W

sis as ΨΨΨ ∈ RW×W , we have that xxx = ΨΨΨsss.
Now, let ∈ be a sampling matrix. Note that, using 
this matrix to sense the full signal xxx, we have yyy = ΦΦΦxxx + nnn,

where nnn ∈ Rm represents the measurement noise, yyy ∈ Rm 
and m < W , which means that xxx is being subsampled.

CS tools allow the recovery of xxx from its subsampled 
version yyy, where: yyy = ΦΦΦxxx + nnn = ΦΦΦΨΨΨsss + nnn. This is achieved

solving for sss the following equation:

min ‖sss‖1 s.t. ‖yyy − ΦΦΦΨΨΨsss‖2 ≤ ǫ , (1) 
where ǫ represents a bound on the measurement noise. Nu-

merically, a high number of techniques are available to solve

(1); among them we cite ℓ1-magic [56] subspace pursuit [57] 
and NESTA [58].

In this work, we consider two recent ECG compression 
algorithms from [16] and [59], which are based on CS. The 
former exploits a technique called Simultaneous Orthogonal

Matching Pursuit (SOMP), whereas the latter uses Block 
Sparse Bayesian Learning (BSBL) [60]. The algorithms are 
introduced next.

1) SOMP-based CS compression technique (SOMP-CS):

the encoder operates according to the following steps:

• Peak detection: similarly to codebook-based schemes, a

peak detection method is applied to the input signal to

decompose it into segments xxxt, t = 0, 1, 2, . . . .
• Period normalization: each segment xxxt is normalized

to a common length (W samples) using cubic-spline

interpolation. After that, the sparse representation is con-

structed using Daubechies wavelets (db4) [61].

• Sampling and quantization: each 6 consecutive ECG

segments are stored into a W × 6 matrix XXX . A CS

sampled matrix YYY is then obtained as YYY = ΦΦΦXXX , where

ΦΦΦ ∈ R
m×W is a suitable sampling matrix, with m≪W .

YYY and the corresponding original lengths are quantized

and sent to the decoder. Note that this implementation of
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CS belongs to both the inter- and the intra-segment class

as matrix YYY spans across different adjoining segments.

The decoder works as follows:

• Simultaneous Orthogonal Matching Pursuit: each seg-

ment is recovered from YYY using the modified Simultane-

ous Orthogonal Matching Pursuit [62], which exploits the

structure of the wavelet coefficients.

• Period Recovery: the reconstructed segments are re-

interpolated according to their original lengths.

Note that SOMP-CS considers a number of subsequent 
segments (6 in the above description) and, in turn, also 
accounts for the “inter-segment” correlation structure of the 
ECG signal.

2) Block Sparse Bayesian Learning (BSBL): in CS frame-works 
the measured signal is written as yyy = ΨΨΨ′xxx + nnn,

where yyy ∈ Rm is the compressed vector, ΨΨΨ′ = ΦΦΦΨΨΨ, with
ΨΨΨ′ ∈ R

W

m×W is a suitable transformation matrix (m ≪ W ),
xxx ∈ 

nnn
R is

R

a
m 

sparse vector (being in the transform do

xxx
main)

and ∈ is the noise vector. Generally, vector has additional 
structure and can be further represented as a con-

catenation of a certain number g of blocks xi, possibly having

different length di so that xxx = (xxx1, xxx2, . . . , xxxg)T . Each block

xxxi ∈ Rdi , i = 1, . . . , g, is assumed to satisfy a parametrized

multivariate Gaussian distribution p(xxxi, γi, BBBi) ∼ N (0, γiBBBi) 
with the unknown parameters γi and BBBi. γi ≥ 0 controls the 
block-sparsity of xxxi and when γi = 0 the i-th block

becomes the all zero vector. BBBi ∈ Rdi×di is a positive definite 
matrix which captures the correlation structure within

the i-th block. Assuming that the sub-blocks xxxi are uncor-

related the prior of xxx is p(xxx, {γi, BBBi}) ∼ N (0, ΣΣΣ0), where ΣΣΣ0 
= diag{γ1BBB1, . . . , γgBBBg}. For the noise, it is ass

×

umed

that p(nnn, λ) ∼ N (0, λIII), where λ ∈ R+ and I ∈ Rm m is the 
identity matrix. The posterior of xxx (given the measured

vector yyy) is thus obtained as

p(xxx|yyy; {γi, BBBi}ig=1) ∼ N (µµµxxx, ΣΣΣxxx) (2)

where µµµxxx and ΣΣΣxxx can be readily dervied from λ, ΣΣΣ0 and ΨΨΨ′. 
Finally, the Maximum-A-Posteriori (MAP) estimate of xxx, 
denoted by xx̂x, is given by [60]:

[ ]−1
xxx̂ = ΣΣΣ0(ΨΨΨ

′)T λIII + ΨΨΨ′ΣΣΣ0(ΨΨΨ
′)T . (3)

Thus, the problem boils down to the estimation of the pa-

rameters λ and {γi, BBBi}ig=1. This is achieved using a Type
II maximum likelihood procedure. Also, different techniques 
have been developed according to whether the block partition 
is known or not, see [60].

According to the BSBL algorithm, the ECG signal is split 
into a number of segments xxx, each of which consists of W 
samples, where W is a tunable parameter. Typical values for m 
and W are m = 256 and W = 512, see [59]. The maximum 
compression efficiency is thus given by W/m = 2 (in Section 
IV, we experiment with different (m, W ) pairs). We observe 
that BSBL accounts for the intra-block correlation without 
considering the correlation structure among subsequent ECG 
segments. We thus classify

BSBL as an “intra-segment” compression scheme.

The implementations provided by the authors of [16]

(SOMP-CS) and [59] (BSBL-CS) were used for the numerical 
results of Section IV.

F. Discrere Cosine Transform (DCT)

In the signal compression field, Discrete Cosine Transform

(DCT) is often preferred to the Fourier Transform due to its

superior energy compaction capabilities and the fact that it

entails the use of real coefficients. Several ECG compression

methods exploiting DCT have been proposed in the litera-

ture [63]–[68]. Basically, in all of the proposed algorithms

DCT is used to reduce the amount of data to be sent through

the transmission of a subset of transform coefficients, i.e.,

those which carry more information. Some solutions employ

advanced techniques for the pre/post processing of the DCT

coefficients that, however, for wearable devices are expected

to be energetically prohibitive.

In this paper, we consider two DCT based compression

methods that differ in the adopted coefficient selection ap-

proach:

• DCT-Cardinality Thresholding: with this selection

method the number of coefficients to be retained is given

as input, and the coefficients are added starting from the

lowest frequencies, i.e., the leftmost coefficient. Through

this strategy the compression ratio can be finely tuned,

but there are no guarantees on the reconstruction error at

the decompressor.

• DCT-Energy Thresholding: with this method the coef-

ficients are selected so as to meet an energy threshold

constraint. The total energy of the DCT spectrum, E,

is calculated and the coefficients that contain a pre-

determined fraction Eth of this energy are kept. The

coefficients are selected again from the lowest to the

highest frequencies, exploiting the energy compaction

property of the DCT, so that their frequency position does

not have to be encoded.

G. Discrere Wavelet Transform (DWT)

Wavelet compression schemes are based upon the trans-

mission of a subset of the transform coefficients. In fact, in

the Wavelet domain most of the signal information is often

concentrated in just a few of them. Letting z[n] be the discrete

input temporal signal, defined for n = 0, 1, . . . ,M − 1,

in this work we consider the Discrete Wavelet Transform

(DWT) [61], which is defined through the following equations

γ[j, k] =
1√
M

∑

n

z[n]ϕj,k[n] ,

where ϕj,k[n] =
1√
sj0

ϕ

[
n− kτ0s

j
0

sj0

]
, j, k ∈ N .

(4)

γ[j, k] is the DWT coefficient matrix and z[n] can be expressed

as z[n] = (1/
√
M)

∑
j,k γ[j, k]ϕj,k[n]. The parameter s0,

called scale step, has a fixed value (greater than 1), and τ0 is
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the translation step. Dyadic sample is commonly used, which

amounts to setting s0 = 2 and τ0 = 1. ϕ(·) is a function,

referred to as mother wavelet, that is translated and scaled

to represent the original signal z[n]. An efficient and widely

adopted implementation of DWT, both for decomposition

and reconstruction uses Quadrature Mirror Filters (QMF). As

shown in (4), z[n] can be decomposed into an infinite number

of wavelets, but in practice a few levels of decomposition (i.e.,

a finite number of Wavelet coefficients) already account for

most of the signal energy. In the case of dyadic sampling,

at each decomposition step the frequency band of the output

signal is halved – this allows downsampling the output of

each processing step by a factor of 2, without any loss of

information.

Wavelet based compression uses the most significant coeffi-

cients for reconstruction and the coefficient selection strategy

is the main discriminating factor among the existing algo-

rithms. The most widely adopted selection strategies are:

• DWT-Level Thresholding: all the coefficients falling

below a certain threshold are discarded. Usually, each

level of decomposition has a different threshold. This

method is commonly used for denoising.

• DWT-Cardinality Thresholding: this is the counterpart

of “DCT-Cardinality Thresholding”. Here, a fixed number

of coefficients is retained, discarding those with the

lowest absolute values. As for DCT, this selection strategy

allows fine tuning the compression ratio, which directly

depends on the number of coefficients retained. With this

approach, it is however difficult to precisely control the

resulting reconstruction quality [69].

• DWT-Energy Thresholding: this is the counterpart

of “DCT-Energy Thresholding”. An energy threshold

Eth < 1 is set. At each step of the Wavelet transform,

the coefficient with the highest value is retained (i.e., it

is included in the compressed vector yyy). The energy of

the selected coefficients is defined as E = yyyTyyy. This

operation is repeated until E/E0 > Eth, where E0 is the

energy of the input signal z[n].

In this work, we implemented the algorithm of [15], which

is based on energy thresholding. There, in addition to the

vector containing the retained coefficients, a coefficient map

is also sent so as to track their position within the considered

transform levels. The compression ratio is then tuned via Eth.

Five levels of dyadic decomposition were considered, and bi-

orthogonal 4.4 was used as the mother wavelet, as it provided

the best results among other choices.

H. Lightweight Temporal Compression (LTC)

LTC [12] is a fast linear approximation technique working

as follows. Let z[n], n = 0, 1, 2, . . . be the input time series.

The algorithm starts selecting z[0] as the left endpoint of the

current approximating segment. The following points z[n] with

n > 0 are transformed into vertical intervals [z[n]−ε, z[n]+ε]
where ε > 0 is an error tolerance on the reconstructed

signal. When point n > 1 is considered, LTC evaluates the

segment with extremes (z[0], z[n]) and checks whether this

segments falls within each of the previously obtained vertical

intervals around z[1], z[2], . . . , z[n − 1]. If this is the case, the

algorithm obtains the vertical interval for the current point n
and performs the check for the next point n + 1. Otherwise,

the algorithm stops, taking z[n − 1] as the right endpoint 
of the current segment. Thus, 1) z[0] and z[n − 1] are sent

as the left and right endpoints of the current segment as an

approximation to values {z[0], z[1], . . . , z[n−2], z[n−1]} and 
2) the algorithm reiterates with a new approximating segment,

taking z[n − 1] as its left endpoint.

IV. NUMERICAL RESULTS

In this section, we show quantitative results for the con-

sidered signal compression algorithms, detailing their energy 
consumption (for compression and transmission), compression 
efficiency and reconstruction fidelity. The energy consumption 
for compression has been computed by taking into account the 
number of operations performed by the Micro-Controller Unit 
(MCU), i.e., the number of summations, multiplications, 
divisions and comparisons. These have been subsequently 
translated into the corresponding number of cycles and, in turn, 
into the energy consumption in Joule per bit considering the 
Cortex M4 [70] as a reference processor, see also [71]. In 
addition to the processing energy, we also considered the 
energy consumption associated with the transmission of the 
compressed data over the wireless medium. To this end, we 
took a Texas Instruments CC2541 low-energy Bluetooth 
system-on-chip [72], which is widely adopted for IoT devices.

The Compression Efficiency (CE) has been computed as 
the ratio between the total number of bits that would be 
required to transmit the full signal divided by those required for 
the transmission of the compressed bitstream. For the 
reconstruction fidelity, we computed the Root Mean Square 
Error (RMSE) between the original and the compressed 
signals normalizing it with respect to the signal’s peak-to-peak 
amplitude, that is:

RMSE =
100

p2p
i=1

L
, (5)

where L corresponds to the total number of samples in the 
trace, xi and x̂i are the original sample and the one 
reconstructed after the decompressor in position i, respectively. 
p2p is the average peak-to-peak signal’s amplitude.

We observe that other metrics such as the Percentage 
Root mean square Difference (PRD) are also possible [73]. 
Nevertheless, we observe that PRD does not have a direct 
interpretation, whereas our RMSE metric allows one to im-

mediately gauge the error against the signal’s range. For this 
reason, we used (5) in the following plots.

In the next Section IV-A we first assess the performance of 
the considered compression algorithms for the standard test 
ECG traces from the PhysioNet MIT-BIH arrhythmia database 
[74]. Thus, in Section IV-B we extend our analysis to ECG 
traces that we collected from a Zephyr BioHarness 3 wearable 
chest strap. In Section IV-C, we consider PPG and RESP 
signals.
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Fig. 4: RMSE vs compression efficiency for ECG signals:

DCT, DWT, LTC and OD.

A. PhysioNet ECG traces

In the first set of graphs, we show results for ECG signals.

To this end, we considered the following traces from the

MIT-BIH arrhythmia database [74]: 101, 112, 115, 117, 118,

201, 209, 212, 213, 219, 228, 231 and 232, which were

sampled at rate of 360 samples/s with 11−bit resolution. Note

that not all the traces of the database are usable (some are very 
noisy due to heavy artifacts probably due to the disconnection 
of the sensing devices) and an educated selection has to be 
carried out for a meaningful performance analysis, as done in 
previous work [74], [75]. The above performance metrics were 
obtained for these traces and their average values are shown 
in the following plots.

In Figs. 4, 5 and 6 we show the RMSE vs CE performance 
for all compression algorithms. Fig. 4 shows the performance 
of standard compression approaches, namely, DCT, DWT and 
linear approximation (LTC), Fig. 5 presents that of the 
codebook-based schemes (GSVQ and OD), whereas in Fig. 6 
we show results for dimensionality reduction algorithms, 
namely, BSBL-CS, SOMP-CS, PCA and AE. Our online dic-

tionary (OD) scheme is plotted in all figures for comparison. 
The tradeoff curves of OD have been obtained by varying the 
representation accuracy ε as a free parameter.

In Fig. 4, we consider the energy thresholding version of 
DCT (DCT-ET). We also experimented with its cardinality 
thresholding (CT) variant and we found its performance to be 
very similar to that of DCT-ET in every respect (RMSE, 
compression efficiency and energy). Thus, implementation 
convenience will dictate which of the two variants is to be 
preferred. LTC outperforms DCT-ET in terms of RMSE and 
CE; although, we remark that this is not always the case. For 
example, in [36] a DCT implementation that considerably 
surpasses LTC in terms of RMSE is proposed, but this comes at 
the price of a much higher computational complexity. This is 
possible through a more sophisticated selection of the 
coefficients, which requires performing inverse transforms for 
every ECG segment. This DCT variant is however not 
considered here as it is not deemed appropriate for wearable
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Fig. 5: RMSE vs compression efficiency for ECG signals –

comparison of codebook-based compression schemes: GSVQ

and OD. K is the (fixed) size of the GSVQ dictionary.
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BSBL-CS, SOMP-CS, PCA, LTC, AE and OD.

devices, due to its high computational cost. DWT does a

much better job than DCT in terms of RMSE, especially at

relatively small compression efficiencies, say, smaller than 30,

but it is unable to reach higher compression efficiencies, for

which LTC and OD are to be preferred. At small compression

efficiencies, adaptive algorithms may be a valuable option – for

instance, one may switch between LTC and OD as a function

of the required compression level. For OD, we also look at

the number of codewords in the dictionary as a function of

the compression efficiency, see Fig. 7. From that plot, we see

that using OD is especially convenient at high compression

efficiencies, i.e., higher than 45. In this region, the size of

the dictionary is in fact reasonably small (smaller than 35
codewords) and it is thus feasible to store it in the limited

memory of wearables. Specifically, for the considered setup

the size of each codeword is (W × 11)/8 = 275 bytes,

where W = 200 is the segment length and 11 is the number

of bits to represent the signal samples from the MIT-BIH

database. This means that a dictionary of 35 codewords takes
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Fig. 7: Online dictionary compression: codebook size as a

function of the compression efficiency. The tradeoff curve is

obtained by varying the representation accuracy parameter ε.

35× 275 = 9.625 kbytes of memory space.

A comparison for the codebook-based algorithms is pre-

sented in Fig. 5. For GSVQ we move along the RMSE

vs CE curves by changing the threshold that governs the

number of bits that are encoded into the residual stream. As

discussed in Section III-B, residual encoding is the operation

that affects the most the performance of GSVQ. The dictionary

size K affects the maximum achievable compression but the

maximum CE is always smaller than that of OD, where the

dictionary adapts to the signal in an online fashion. Although

not shown in the plot, one may be thinking of not sending the

residual encoding stream, so as to reach higher compression

efficiencies. However, due to the use of a precomputed and

fixed dictionary, this leads to a very high RMSE and is not

recommended.

PCA is shown in Fig. 6. From this graph we see that the

performance of PCA closely matches that of LTC, which is

plotted in the same figure for the sake of comparison. This

is quite interesting and non trivial – although both algorithms

rely on linear approximations, PCA is rather involved, whereas

LTC has a much lighter computational cost, as we show

shortly. Also, in Fig. 6 the tradeoff curve for PCA is obtained

by varying the number of principal components h from 100
(leftmost point in the figure) down to 5 (rightmost point)

in steps of 5, whereas the performance of LTC is plotted

varying ε within a continuous interval. Overall, LTC permits

a fine-grained control of the RMSE vs compression tradeoff,

whereas this is not possible with PCA, especially at high

compression efficiencies (small h). Finally, LTC provides a

means to precisely control the maximum reconstruction error,

through the parameter ε, whereas the number of retained

principal components h does not provide any guarantee in

terms of reconstruction accuracy.1

AE is shown in Fig. 6, where the number of inner neurons h
is varied as a free parameter in {100, 50, 25, 10, 5, 2}: h = 100

1With PCA, an inverse transform at the compressor is required to assess
the reconstruction error provided by a certain value of h.
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Fig. 8: RMSE as a function of the energy consumption

associated with the compression of ECG signals.

is represented by the leftmost point in the graph, whereas

the rightmost corresponds to h = 2. AE obtains the best

performance both in terms of RMSE and CE. We underline

that this algorithm entails an offline training phase which

has two drawbacks: 1) usually, this phase is computationally

demanding and requires a representative dataset, 2) although

autoencoders have excellent generalization capabilities, if the

statistics of the underlying signal changes substantially, there

are no guarantees that autoencoders trained with the old data

will still provide good approximations for the new signals.

However, the RMSE performance achieved by AE is striking

and spurs the use of neural networks within this domain. A

note on the AE compression efficiency is in order. For OD the

compressed bitstream comprises the following fields, which

are sent for each new ECG segment: the codeword index, the

original segment length, the gain and the offset. Thus, when no

updates of the dictionary occur, 4 parameters are to be sent for

each new segment. The maximum compression efficiency of

OD is thus obtained as2 CEmax
OD = SamplesPerSeg/4, where

SamplesPerSeg corresponds to the number of samples in a

segment. With AE, for each segment we only send the h values

associated with the inner neurons, see Fig. 3, and the length

of the original segment. Two additional offsets are sent only

once, when the compression starts. Thus, the maximum CE is

approximated as CEmax
AE ≃ SamplesPerSeg/(h+ 1). For an

average segment size of 318 samples, we get CEmax
OD = 80

and CEmax
AE = 106, which explain the results in Fig. 3. Note

that the compression efficiency of OD is actually smaller than

80 and this is due to the new codewords that must be sent to

update the dictionary at the decompressor.

For AE, the memory occupation is fixed and amounts to

the memory needed to store the weights of the encoder in

Fig. 3 and the output values generated by the inner layer,

i.e., ((W + 1) × h × 11)/8 bytes, where W = 200, h is

the number of inner neurons and 11 is the number of bits

2For the sake of clarity, we assume that input samples and parameters
are represented through the same number of bits. If this is not the case, the
following equation should consider the different precision.
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TABLE I: Complexity [no. operations] and energy consumption [µJ] figures. RMSE is 7.5% for all algorithms except AE for

which the average RMSE is 3.75% (the highest with AE, obtained with h = 2 neurons in the inner compression layer).

DCT-ET DWT-ET GSVQ BSBL-CS SOMP-CS LTC OD AE

Additions 13463 7809.9 98114 3747 540912 1258.8 84411 82439

Multiplications 9089.8 6883.5 82788 0 613797 0 82817 81535.7

Divisions 0 323.16 1137.2 0 311.89 634.05 940.19 938.689

Comparisons 30.35 7723.1 475.63 0 155.72 1231.1 986.99 462.708

Compression energy 0.74 0.88 6.47 0.12 38.05 0.37 5.95 5.83

TX energy 124.22 45.85 35.82 639.03 32.15 37.90 20.37 13.45

Total energy 124.96 46.73 42.29 639.15 64.20 38.27 26.32 19.28

to represent a floating point (either a weight or an encoder 
output). Given this, with, e.g., h = 8 the memory footprint of 
AE is 2.211 kbytes.

As for the CS-based algorithms, neither SOMP-CS nor 
BSBL-CS provides satisfactory performance. The compression 
efficiency of SOMP-CS is rather small and the corresponding 
RMSE tends to diverge for, e.g., CE larger than 12. As we shall 
see shortly below, the energy performance of SOMP-CS is 
unsatisfactory when compared to that of other algorithms and 
the compression strategy of BSBL-CS has the lowest energy 
consumption, but its intra-segment approach is much less 
effective than that of other inter-segment schemes such as 
SOMP-CS, dictionary based algorithms (GSVQ, OD) and AE. 
Although the results that we show here for SOMP-CS and 
BSBL-CS were respectively obtained using the implementa-

tions from [16] and [59], we found similar CE figures in other 
papers [17], where the compression efficiency is defined as

CE′ = ((W − m)/W ) × 100, with W being the number of
original samples and m the number of compressed samples

that are transmitted to the receiver. With this definition, CS 
schemes achieve maximum efficiencies of 80-90%. We observe 
that these figures correspond to a CE ranging from 5 to 10 
according to the definition that we use in the present paper, i.e., 
CE = W/m.

In Fig. 8, we show the RMSE against the energy drained for 
compression at the transmitter, expressed in Joule per bit in the 
original ECG sequence. These tradeoff curves are obtained by 
varying the compression efficiency of each algorithm from 1 to 
the maximum achievable (which is scheme-specific, see Fig. 
10). SOMP-CS has the highest energy consumption, BSBL-CS 
the smallest, LTC is the second best, whereas OD and AE 
perform between LTC and SOMP-CS. The good performance 
of BSBL-CS is due to its compression algorithm which just 
multiplies the input signal by sparse binary ma-

trices, with entries in {0, 1}. We underline that the energy

consumption of OD and AE is dominated by the preprocessing 
chain of Fig. 1. To verify this, in this figure we also show their 
performance by removing the contribution of the pre-

processing blocks: the corresponding curves are referred to in 
the plot as “OD NoPre” and “AE NoPre”, respectively. Note 
that filtering is always performed to remove measurement 
artifacts and peak detection is also very often utilized to extract 
relevant signal features. Given this, the energy consumption 
associated with the required pre-processing functions may not 
be a problem, especially if these functions are to be executed 
anyway. Although not shown for the sake of readability of the 
plot, PCA and GSVQ have nearly the same energy 
consumption of OD.
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In Fig. 9, we show the RMSE as a function of the total 
energy consumption, which is obtained summing the energy re-

quired for compression to that for the subsequent transmission 
of the compressed bitstream over a CC2541 Bluetooth low-

energy wireless interface. This total energy is then normalized 
with respect to the number of bits in the original ECG signal. 
From this plot, we see that the total energy consumption is 
dominated by the transmission energy, which depends on the 
compression efficiency. The best algorithms are LTC, OD and 
AE and the algorithm of choice depends on the target RMSE 
that, in turn, directly descends from the selected compression 
efficiency. As discussed above, an adaptive algorithm may be a 
good option, where for each value of CE the scheme providing 
the smallest RMSE is dynamically selected. The energy 
consumption when no compression is applied is also shown in 
the figure for comparison. We see that signal compression, and 
the subsequent reduction in size of the data to be transmitted, 
allows a considerable reduction in the total energy 
consumption. Specifically, AE and OD respectively enable 
energy savings of about one order of magnitude while 
respectively providing RMSEs smaller than 2% and 4%. The 
performance of AE is particularly striking as it allows saving 
up to two order of magnitude in terms of energy consumption 
by still keeping the RMSE around 4%. This motivates the use 
of signal compression techniques for continuous monitoring 
applications for IoT devices. Note that the actual RMSE can be 
dynamically tuned at runtime, by allowing slightly less accurate 
representations (and thus much higher compressions) when no 
critical patterns are detected. Also, for AE a visual inspection 
reveals that a RMSE smaller than 4% entails ex-cellent 
approximations to the original biosignals, and that the error is 
mainly due to smoothing out spurious oscillations that are 
introduced and that are not filtered by the preprocessing chain 
of Fig. 1.

A breakdown of the complexity and energy consumption 
figures for the considered algorithms is provided in Table I. 
These metrics were obtained for the Physionet ECG signals and 
represent the average complexity (expressed in terms of 
number of operations) and energy consumption (Joules) for the 
compression and transmission of a single ECG segment of data. 
As expected, BSBL-CS is the most energy efficient for the 
compression phase, whereas LTC is the second best. Other 
algorithms such as OD and AE are more demanding in terms of 
number of operations but their compression efficiency is much 
higher. Since the transmission energy dominates that needed 
for data processing, AE and OD represent the best alternatives 
when all the contributions are added up.

B. Wearable ECG Signals

We now present some results for ECG signals that we 
acquired from a Zephyr BioHarness 3 wearable device [6]. 
To this end, we collected ECG traces from eleven healthy 
individuals, which were continuously recorded during working 
hours, i.e., from 8am to 6pm. These were sampled at a rate 
of 250 samples/s with each sample taking 12 bits.

The RMSE vs CE tradeoff for these signals is shown in 
Fig. 10 for the best performing compression algorithms.
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Fig. 10: RMSE vs compression efficiency for ECG signals: 
DWT-ET, GSVQ, SOMP-CS, LTC, OD and AE.

The results are similar to those of Figs. 4–6 with the main 
difference that in this case the ECG signals have more artifacts 
and a higher variability. As such, the resulting RMSE is also 
higher for all schemes and the compression performance is 
degraded. The general trends and recommendations remain 
unchanged, i.e., SOMP-CS and LTC are good choices at low up 
to intermediate compression efficiencies, whereas OD and AE 
perform better at higher CEs. However, we remark that the 
OD’s compression efficiency is impacted with respect to that in 
Fig. 6 as the non-steady data of wearables requires more 
frequent dictionary updates. AE is still very effective, providing 
the highest compression efficiencies and the smallest RMSE. 
BSBL-CS performs unsatisfactorily and its RMSE performance 
is the one being affected the most by the non-steady behavior of 
wearable data.

The energy consumption figures of all schemes, although 
slightly rescaled, have a totally similar behavior as those 
obtained with the PhysioNet MIT-BIH traces (see Figs. 8 and 9) 
and are thus not shown in the interest of space. In fact, the 
energy consumption is marginally affected by the non-

stationary behavior of wearable signals, which impacts more on 
the RMSE and compression performance.

As an illustrative example, in Figs. 11 and 12 we respec-

tively look at the per segment RMSE and CE performance of 
LTC, OD and AE. In Fig. 11 we fix the compression efficiency 
to CE=28 for all schemes and we show the RMSE for each 
segment considering 12 minutes of ECG readings from one of 
the subjects. Overall, OD performs satisfactorily, providing an 
average RMSE of 4%, LTC settles around an RMSE of 11% 
and AE achieves the best accuracy, i.e., RMSE=2.6%. Artifacts 
and the non-steady behavior of the Bioharness ECG traces 
require more frequent dictionary updates for OD, which then 
entail some major variability in its RMSE performance, as can 
be clearly seen in the range [600, 700] segments in both plots. 
Specifically, when the current dictionary is no longer 
representative of the input data, at first the RMSE increases and 
then it sharply decreases due to the consequent dictionary 
update. Fig. 12 shows the per segment compression
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Fig. 12: CE as a function of time. RMSE = 3% for all schemes, 
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efficiency for the same ECG trace by operating LTC, OD and 
AE so that their average RMSE is 3%. From this plot we see 
that AE reaches much higher CEs, delivering strikingly good 
performance. Besides, the CE of OD sometimes drops to one 
(no compression) and this happens when the dictionary is 
updated (see the range [600, 700] segments in the x-axis of Fig. 
12). Note that the first update occurs at time zero, as OD has no 
dictionary at the beginning of the ECG sequence.

C. PPG and RESP Signals

As a final result, in Figs. 13 and 14 we respectively

show the RMSE vs CE performance for PPG and respira-

tory (RESP) signals from the PhysioNet MIMIC-II waveform

database [74]. In these graphs, we only show the perfor-

mance of the three best algorithms, namely, LTC, OD and

AE. AE is plotted considering the number of inner neurons

h ∈ {100, 50, 25, 10, 5, 2}, where h = 100 is represented

by the leftmost point, whereas h = 2 by the rightmost, and

outperforms all the remaining schemes for h ≤ 5. Clearly, OD
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Fig. 13: RMSE vs compression efficiency for PPG signals.
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Fig. 14: RMSE vs compression efficiency for respiratory

signals.

and AE are still effective for these signal types. For respiratory

signals, LTC performs best for compression efficiencies up

to 40, OD is to be preferred for intermediate efficiencies

between 40 and 80. The compression efficiency obtained for

PPG signals is smaller than that achieved for ECG and RESP

but this is due to the lower sampling rate in the PPG traces.

For all signals, the RMSE of AE never exceeds 4%, while its

CE respectively reaches 56 and 156 for PPG ad RESP when

just two inner neurons (h = 2) are utilized. These results are

impressive and motivate further research, especially to make

the AE learning phase online and subject-adaptive, as we do

for OD.

V. LESSON LEARNED AND OPEN ISSUES

In this paper, we advocated the use of lossy compression

as a means to boost energy efficiency in wearable wireless

devices. As a first contribution, we presented an original

dictionary based technique, where compression is achieved by

building and maintaining at runtime a dictionary. This dic-

tionary is subsequently used to approximate signal sequences

transmitting codeword indices in place of the original samples.
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This technique is found to be very effective, showing excellent

approximation capabilities and very high compression efficien-

cies at the cost of a reasonably small amount of computation.

We then considered compression algorithms based on linear

approximations. Despite their inherent simplicity, we found

them to be quite effective and, when the required compression

efficiency is not too high, they represent the best option among

competing solutions. We also found that a recent scheme be-

longing to this class, called lightweight temporal compression,

very closely matches the performance of principal component

analysis, at a much smaller computational cost and additionally

providing inbuilt guarantees on the maximum approximation

error at the decompressor. Thus, we explored the performance

of recent approaches based on autoencoders. These neural

network architectures are found to be extremely effective,

leading to the highest compression efficiencies at a reasonable

computational cost. Their performance is striking especially

at very high compression rates, where just two inner neurons

are utilized to represent input patterns comprising several

hundreds of points, still providing very small approximation

errors (usually the RMSE remains bounded within 4%). The

performance of these algorithms was numerically evaluated

against that of the most prominent schemes from the literature,

i.e., Fourier and Wavelet transforms, compressive sensing and

vector quantization techniques.

Open research areas. From the numerical analysis that

we have carried out in this paper, we have identified several

avenues for future research. We have seen that the most

promising means to reach high compression efficiencies is to

exploit inter-segment correlation. Dictionary based algorithms

belong to this category and do a very good job in all respects.

Nevertheless, the online scheme proposed in this paper uses

too much memory space at relatively small compression

efficiencies, say, smaller than 40. Autoencoders also have a

main drawback. In fact, these networks need to go through an

offline training phase, during which their weights are shaped

utilizing a representative dataset. Although they have excellent

generalization capabilities, they will be nevertheless unable

to satisfactorily represent input patterns that sharply differ

from those in the dataset used for training. Hence, a desirable

contribution would be to concoct a new neural network based

algorithm with the following properties, both very relevant

from a practical standpoint: a) we would like the size of

the dictionary not to grow with a diminishing RMSE or,

equivalently, with a decreasing compression efficiency. Ideally,

the dictionary size should be kept constant. b) We would also

like the training phase to be carried out in an online fashion.

In this way, the dictionary will adapt to the specific signal

statistics of the subject wearing the device. Another interesting

subject for future investigations is the joint compression of

multiple vitals, including respiratory rate, electrocardiogram,

plethysmograph, and data from motion sensors.
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