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Abstract—Modern wearable IoT devices enable the monitoring
of vital parameters such as heart or respiratory rates (RESP),

electrocardiography (ECG), photo-plethysmographic (PPG) sig-
nals within e-health applications. However, a common issue
of wearable technology is that signal transmission is power-
demanding and, as such, devices require frequent battery charges
and this poses serious limitations to the continuous monitoring
of vitals. To ameliorate this, we advocate the use of lossy signal
compression as a means to decrease the data size of the gathered
biosignals and, in turn, boost the battery life of wearables and
allow for fine-grained and long-term monitoring. Considering
one dimensional biosignals such as ECG, RESP and PPG, which
are often available from commercial wearable IoT devices, we
provide a throughout review of existing biosignal compression
algorithms and introduce novel approaches based on online
dictionaries, elucidating their operating principles and providing
a quantitative assessment of their compression, reconstruction
and energy consumption performance. As we quantify, the most

efficient schemes allow reductions in the signal size of up to 100
times, which entail similar reductions in the energy demand, by

still keeping the reconstruction error within 4% of the peak-to-
peak signal amplitude. Avenues for future research are finally

discussed.

. Index Terms—wearable IoT devices, biomedical signal process-
ing, signal compression, sparse autoencoders, pattern recognition,

energy efficiency.

I. INTRODUCTION

NTERNET of Things (IoT) technology enables objects to

sense the physical environment and to seamlessly integrate
the gathered data into sophisticated Internet applications that
allow for substantial improvements of human activities at
large. The focus of this paper is on human sensing [1]
through wearable IoT devices, such as smart watches, chest
straps or wristbands, which can be used to help address
the individual health and the fitness needs of the users [2]. For
instance, wearables can be utilized to gather and share
information about the status of outpatients, making it possible
to collect, record and analyze new data streams faster and more
accurately. This allows for an improved access to healthcare, an
increase of its quality and ultimately, a reduction in its cost.
Telehealth systems could deliver care to people in remote
locations and provide streams of accurate data for making
better care decisions (e.g., in terms of therapy adjustments or
prompt interventions). In addition, these systems are expected
to have a big impact on the field of rehabilitation, where, e.g.,
users may wear e-textile systems for remote, continuous
monitoring of physiological and movement data [3]. Through
IoT technology, a large number of physiological signals can be
monitored including oxygen saturation, blood pressure, heart
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rate, respiration rate, glucose level [2], [4] and user activities
such as walking, standing, sleeping, etc., can be inferred [5].
A recent survey of wearable devices and their use is offered
in [2], whereas rehabilitation systems are discussed in [3].

We look at an IoT scenario for e-health, where wearables are
utilized to collect physiological signals, preprocess and
transmit them over their wireless interface for their final storage
and manipulation via backend server infrastructures. Within
this context, we are concerned with the design of online signal
compression algorithms, so that the gathered signals can be
effectively stored in the limited memory space of wearables and
conveniently transmitted over their radio interface. Ideally, we
would like this software to adapt to the signals being sampled,
by being prompt when required by the application and gently
go into some power saving mode when the signals exhibit
regular patterns. This means that, high resolution should be
provided when the user is up to some dynamic activity and
wants to track that or when a critical behavior is detected.
Toward this end, we advocate the use of lossy compression as a
means to reduce the space taken by the collected biosignals
and, at the same time, to save battery power through a reduced
transmission time. This amounts to compressing the
physiological data directly at its source.

As for the physiological signals of interest, we consider one
dimensional and quasi-periodic biomedical signals as those
provided by typical sensors in chest straps or wristbands, i.e.,
electrocardiography (ECG), photo-plethysmographic (PPG)
and respiratory (RESP) signals. ECG is probably the most
important among them for the diagnosis of heart malfunctions
and IoT technologies are expected to be very useful to as-
sess cardiac conditions within patient-monitoring applications.
Commercial devices such as the Bioharness 3 from Zephyr
Technology Corporation [6] can be utilized to measure this
type of signal. RESP signals are also very relevant and can
be obtained from chest straps [7] or rubber straps [8] placed
around the abdomen to, e.g., assess the status of outpatients
affected by chronic respiratory failure and allow monitoring
them from home. PPG is often available in low-cost IoT
devices for the consumer market (such as smart watches or
wristbands designed for fitness applications), see the Angel
sensor wristband [9]. PPG can be used to estimate heart-
rate [10] and recent studies indicate that blood pressure can
also be inferred [11].

We believe that, despite the focus and hype on wearable
technology, research on data processing algorithms for wear-
able 10T devices is still in its infancy and most still has to
be done to take full advantage of this portable technology,
especially in the medical field. In past research, a large
number of compression algorithms were proposed for ECG,
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but signal compression has never been applied to RESP or
PPG. Moreover, performance assessments were only carried
out for quality of compression and reconstruction, whereas
the energy consumption aspect has often been neglected.
Instead, we stress that energy should be sparingly used by
the software running on wearables, as these devices are often
battery operated and, in turn, their energy consumption is a key
consideration. Also, to the best of the authors’ knowledge, no
quantitative comparison among existing solutions can be found
in the literature and, due to this, it is unclear which algorithms
are best suited for use in wearable devices.

In this paper, we aim at filling these gaps. First, in Section II
we present a taxonomy of popular signal compression schemes
from the literature, touching upon linear approximations [12],
[13], Fourier [14], Wavelet [15] transforms and novel com-
pression techniques based on compressive sensing [16], [17]
and denoising autoencoders [18].

A novel compression architecture based on vector quan-
tization and pattern recognition [19] is proposed in Sec-
tion III-A, where a suitable codebook (or dictionary) is built
and maintained in an online fashion to efficiently represent
data patterns. Compression is achieved as codebook indices are
sent to the decompressor in place of the original time series.
Despite its simplicity, this technique is found to be appealing
due to its excellent performance in the high compression
regime. The other selected algorithms from the literature
are detailed in Section III and a comparative performance
evaluation of all the considered compression approaches is
carried out in Section IV, where we quantify their compression
efficiency, signal reconstruction fidelity and, most importantly,
their energy consumption. Also, we estimate the battery time
improvement due to the adoption of the discussed compression
technology for continuous monitoring applications.

Finally, our conclusions are presented in Section V, along
with a discussion of open research issues.

To summarize, the main contributions of this paper are:

« A taxonomy of existing signal compression schemes that
are amenable to implementation on wireless wearable IoT
devices.

« A simple but effective dictionary-based approach to the
online classification and compression of biosignals, along
with its validation.

o A detailed performance evaluation of the considered com-
pression schemes in terms of reconstruction error, energy
consumption (isolating the energy required for compres-
sion and transmission) and compression efficiency when
applied to ECG, RESP and PPG signals.

o A discussion of open areas for improvement and new
research avenues.

II. TAXONOMY OF LOSSY COMPRESSION SCHEMES

In the last few years, a great deal of work has been carried
out on tools for the efficient ECG signal analysis, facial image
recognition or the identification of fingerprints acquired by a
cell phone, see [20]. PPG is being intensively investigated for
the estimation of the heart rate [10] and motion data is being
used for activity detection [21]. Nevertheless, apart from ECG,

little has been done regarding the compression of other signals,
such as PPG, RESP, etc. In this taxonomy, we first focus on
ECG and then elaborate on the use of compression for other
signal types.

The two most important tasks to be accomplished in
the ECG domain are 1) QRS complex detection and 2)
signal compression. As per QRS detection, it is crucial to
split the ECG time series into heart beat segments (one
segment per beat) as this allows the fine-grained assessment
of inter-beat signal features, which are useful to detect
certain pathologies. Note that ECG can be efficiently split
into beat segments as it is a quasi-periodic time series
exhibiting recurrent patterns. As per signal compression, we
emphasize that wearable devices are energy and memory
constrained and, as such, minimizing the amount of data
to store and send is an important consideration. As an
example, a typical sampling rate of 250 samples per second
with 12 bits per sample (e.g., from a Zephyr’s Bioharness
device) leads to 32.4 Mbytes of data for a full day. As we
will see below, compression algorithms can easily reduce
this number by 70 times to about 463 kbytes, leading to
much higher efficiencies in terms of memory and transmission.

1) QRS complex detection has been extensively studied in
the literature. Several methods were proposed to detect QRS
complexes and to enhance their features. The importance
of QRS enhancement has been demonstrated to detect the
QRS complex [22]. In particular, amplitude thresholding [23],
first and second derivative methods [24], mathematical
morphology [25], [26], filter banks [27], and wavelet
transform techniques [28] are among the methods used for
the enhancement of the QRS complex. The QRS detection is
instead usually performed with a combination of techniques
such as thresholding [23], [25], neural networks [29], wavelet
transform [30], matched filters [31]. These techniques are of
foremost importance as they split the ECG time series into
segments (i.e., the data points between subsequent heartbeats),
which are then utilized for the subsequent estimation of the
pulse, and for the compression of the ECG trace.

2) Signal compression. Quite a few lossy and lossless
compression algorithms for ECG signals have been proposed
in the literature in the last decades. Typically, they can be
classified into three main categories:

o Time domain processing: within this class we have
AZTEC [32], CORTES [33] and Lightweight Temporal
Compression (LTC) [12]. AZTEC and CORTES achieve
compression by discarding some of the signal samples
and applying a linear approximation, whereas LTC ap-
proximates the original time series through piecewise
linear segments, where the two end points of a segment
are sent in place of the points in between. As we show
in Section IV, in spite of its simplicity, LTC closely
matches the performance of Principal Component Anal-
ysis (PCA) [13], [34].

o Transform based coding: these exploit transformations
such as Fast Fourier Transform (FFT) [14], Discrete
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Cosine Transform (DCT) [35] and Discrete Wavelet
Transform (DWT) [15]. The rationale behind them is to
represent the signal in a suitable transform domain and
select a number of transform coefficients to be sent in
place of the original samples. The amount of compression
depends on the number of coefficients that are selected,
the representation accuracy depends on how many and
which coefficients are retained. Although the schemes
belonging to this class have good compression capabil-
ities, their computational complexity is often too high
for wearable devices [36]. Lightweight implementations
are possible and are considered in the present paper.
However, simpler linear and dictionary based algorithms
have better performance in terms of reconstruction error
as we show in Section IV.

o Parametric techniques: these schemes use neural
networks [37], vector quantization [38], Compressed
Sensing (CS) [16] and pattern matching [39]. Their
rationale is to process the temporal series to obtain
some kind of knowledge and use it to predict the signal
behavior. Recently, denoising autoencoders [18] have
been proposed as universal approximators of biosignal
patterns and have been shown to provide excellent
compression performance and to have much smaller
computational costs than competing algorithms. This is
a field with limited investigation up to now. Also, these
algorithms have promising capabilities for the extraction
of signal features.

Despite these developments, we recall that no systematic
comparison was carried out in the existing literature and, more
than that, the proposed algorithms were not evaluated in terms
of their energy expenditure. This is of course very important
for wearables, which are battery operated and thus call for
algorithms that are at the same time extremely effective and
computationally cheap.

In addition, besides ECG, recent advances in technology
for wearable devices have made it possible to efficiently
collect and analyze other signals such as PPG, motion and
respiration through body worn sensor technologies [40]. The
PPG signal can be a powerful diagnostic tool due to simple,
portable, and low-cost technology available for its fast, easy,
and reliable acquisition and can be non-intrusively measured
using wristbands or smart-watches. An increasing number of
works in the literature deal with the extraction of physiological
parameters from the PPG signal such as heart rate, blood
pressure, blood oxigen saturation, and respiration [11], [41],
[42]. Nevertheless, to the best of our knowledge no algorithms
have been proposed so far for the compression of these signals.
Note that with future application developments, besides the
calculation of selected features or health indicators right on the
mobile devices, users or doctors may want to fully monitor the
vitals, which could be sent to smartphones or control centers
for further elaboration so as to provide a fine-grained assess-
ment of the patient’s condition, e.g., to assess the evolution or
occurrence of a certain pathology. In this case, compressed but
accurate representations of vital signals from heterogeneous

sensor technology are expected to be very useful.

IIT. SIGNAL COMPRESSION ALGORITHMS

Next, we detail the selected signal compression algorithms
for quasi-periodic biosignals, by first presenting a novel tech-
nique based on the online construction of a dictionary to
represent input patterns. The compression methods that we
describe below are based on differing paradigms. In fact, some
use the degree of similarity (correlation) across subsequent
patterns (or segments), whereas others consider the correlation
within the same segment. We refer to the former approach to
as “inter-segment correlation” based compression, whereas for
the latter we use the term “intra-segment correlation”. The
algorithms belonging to the inter-segment class are: online
dictionary, vector quantization and autoencoders, whereas al-
gorithms based on principal component analysis, LTC, discrete
cosine and wavelet transforms exploit intra-segment correla-
tion properties. The implementation of compressive sensing
that is considered in this paper belongs to both classes.

A. Online Dictionary (OD)

In this section, we propose a dictionary based compression
algorithm based on the concept of motif extraction [43] and
pattern recognition. Its building blocks are shown in Fig. 1 and
explained in what follows. Although the scheme is simple (it
consists of a single pass vector quantization without codeword
reclustering) it provides excellent performance in the high
compression regime and its analysis sheds some light on the
desirable properties that a compression scheme should have,
allowing the assessment of the pitfalls of offline dictionary
based schemes and the identification of future research direc-
tions, as we discuss in Sections IV and V.

The algorithm belongs to the inter-segment correlation
class and can be applied to the biomedical signals exhibiting
recurrent patterns such as ECG, photo-plethysmographic
traces (PPG), arterial blood pressure (ABP), respiratory
signals (RESP), etc. The idea is that recurrent patterns can
be efficiently identified and used to construct, at runtime, a
codebook (also referred to as dictionary). This codebook is
built and maintained by the compressor at the transmitter side
and has to be synchronized with that at the decompressor at
the receiver. The compression of biosignals is achieved by
sending, for each input pattern, the corresponding index in the
codebook, in place of the original data points. We achieved
this through several processing functions, as shown in Fig. 1,
namely: 1) a passband filter, 2) a peak detector, 3) a segment
extractor, 4) pattern matching and 5) a codebook manager.

1) Passband filtering: as a first step, we use a passband
filter to remove artifacts such as high frequency noise and
the DC component. For ECG, this filter operates in the
band [8,20] Hz, although these can be changed to best suit
other signal types. Here, we implemented the third-order
Butterworth filter of [44].

2) Peak detection: with this algorithm we detect the position
of the main peaks in the time series. For ECG, these
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correspond to the heart beats. To this end, we have adopted
the technique of [45], which has been conceived for ECG
signals but can be easily modified to effectively work with
PPG or respiratory traces. This technique is self-tuning and
optimizes itself based on the input data sampling rate. We
considered this scheme as it is fast and lightweight and thus
suitable for use in wearable and energy constrained devices.

3) Segment extractor: once the peaks are detected, we
consider the data samples between subsequent peaks. These
constitute the input segments for our compressor algorithm.
Note that, unlike the common practice of positioning the
segments so that the peaks (heart beats) are in their center, we
define a segment as the data points between subsequent peaks.
Hence, all segments are normalized according to a predefined
length of W samples, which is the same size of the codewords
in the dictionary. This is accomplished by re-stretching the
segment length to W samples through interpolation (this
block is referred to as “period normalization” in Fig. 1). While
in principle any interpolation technique can be used, such as
quadratic or spline based, in our implementation we utilized
a simple linear technique as we found it sufficiently accurate
while also being computationally inexpensive. Working with
such segments allows using machine learning algorithms for
the construction of the codebook, as we detail shortly.

4) Pattern matching: this block takes the current input
segment and checks whether this matches one of the
codewords in the codebook (dictionary), which is built and
maintained at runtime as we explain in point 5) below.
Several matching criteria are possible. One of such criteria
may be Dynamic Time Warping (DTW) [46], which has been
extensively and successfully used in the literature to compare
patterns of different length and can also be implemented in
linear time [47]. However, we experimented with the DTW
metric and we found it inadequate for ECG signals — the
main problem is that this metric is by construction unable to
preserve the position of the inner peaks in the compressed
representations. Thus, in this work we resized each segment
to a common length, as explained above, and checked for
the best matching codeword using through a suitable distance
function, as we explain next.

5) Codebook manager: this block has a key role in the pro-
posed online compression scheme. It is loosely based on vector
quantization [48] and has two main functions: 1) to maintain a
consistent and representative codebook (dictionary) and 2) to
encode input patterns into the corresponding indices from the
codebook. Let z; be the segment provided by the segment ex-
traction block at the generic time ¢ = 0,1,2, ... (discrete time
is assumed, corresponding to the arrival of a new segment).
With C; = {e1,...,en} we indicate the codebook at time ¢,
where ¢;, i = 1,..., N, are the codewords therein. Segment
z¢ is remapped into a new segment x, of length W samples
as described above, where size(c¢;) = size(a;) = W, for
i =1,...,N. The new segment z; is obtained using linear
resampling and removing offset o, and gain g; from z; (see
equations (5)—(7) of [43]). Thus, a suitable distance function
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Fig. 1: Online codebook-based compression scheme.

d(x,c¢;) is evaluated for all codewords ¢; in the codebook
and the one with the minimum distance, with index ¢*, is
picked. Now, if d(z,¢;) < €, codeword ¢;+ is deemed a good
representative for the current segment 2, otherwise &, is added
to the codebook as a new codeword, where with ¢* we mean
the associated index. € is a tunable parameter that we use to
control the signal reconstruction fidelity at the decompressor.
Finally, the index ¢* is sent in place of the full segment, along
with o;, g; and the original segment length, ¢;. The whole
process is detailed in Fig. 1 (codebook manager block): if a
match for 2z; is found in the codebook (i.e., a codeword
providing a sufficiently good accuracy, according to ), then the
corresponding index is sent over the transmission channel,
along with the original segment length, its offset and gain
parameters. These quantities correspond to the compressed bit-
stream, which is used at the decompressor to approximate the
original time series by reversing each operation. Specifically,
the decompressor applies three transforms to codeword 7* from
the codebook: renormalization with respect to offset o; and
gain g; and resampling according to the actual segment length
£;. Otherwise, if no match is found for z; at the compressor,
this segment is added to the codebook as a new codeword and
its normalized version (W samples) and the corresponding
index are transmitted to the decoder so that the dictionary at
the sender and that at the receiver remain synchronized at all
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We remark that several distance functions can be used in
the codebook manager, the L..-norm has been considered for
the results in this paper as it performed satisfactorily across a
large range of signals.

According to our numerical results, as we show in Sec-
tion IV, the number of codewords in the dictionary increases
with decreasing € but it tends to converge as time goes on. So
the accuracy parameter ¢ also directly affects the dictionary
size and, in turn, the memory requirements of the proposed
algorithm. In case the codebook shall grow larger than the
allowed memory space, the removal of codewords from the
codebook can be implemented based on last used timestamps.

B. Gain-Shape Vector Quantization (GSVQ)

In this section we review the Gain-Shape Vector Quan-
tization (GSVQ) method of [38]. The rationale behind this
algorithm is to exploit the information redundancy among ad-
jacent heartbeats by segmenting the ECG signal into segments
and normalizing the period to a fixed length and amplitude.
The normalized heartbeats are then used to build a dictionary
having a fixed number of codewords K, through the Linde-
Buzo-Gray algorithm [49]. While the general compression
principle (i.e., inter-segment correlation) is similar to that
in our online dictionary based scheme, GSVQ builds the
codebook through an offfine training phase.

Once the dictionary is obtained, the method associates each
normalized heartbeat with the closest codeword, and sends
the codeword index in place of the original time series. The
algorithm also encodes the offset, the gain, and the length of
the original segment, see Fig. 1. As a last step, the encoder
calculates the residual, i.e., the difference between the current
heartbeat (i.e., ECG segment) and the selected codeword,
and uses the AREA algorithm [50], an adaptive sampling
scheme for one dimensional signals, which obtains additional
information to increase the quality of reconstruction. The
principle behind the residual encoding phase is to encode and

send a small number of significant points so as to bound the
reconstruction error.

The decoder, upon receiving an encoded packet, retrieves
the corresponding codeword from its local copy of the dictio-
nary, performs a denormalization using the gain, the offset, and
the length, and adds the residual stream to the reconstructed
signal, see Fig. 2. As we shall see below, GSVQ performance
predominantly depends on its residual encoding phase. The
threshold used for residual encoding is in fact the main
responsible for the amount of data to be transmitted, affecting
the performance in terms of compression, reconstruction error,
and energy efficiency.

C. Principal Component Analysis (PCA)

The goal of Principal Component Analysis (PCA) [13] is
to shrink the information provided by a large set of correlated
variables into a set of principal components with lower dimen-
sionality. Each principal component is computed as a linear
combination (linear transform) of the original variables, and
the combination weights are chosen so that the components are
mutually uncorrelated. This technique has been successfully
applied in a multitude of applications, including ECG signal
compression [34].

Before applying PCA, the biomedical signal goes through
the preprocessing chain of Fig. 1, i.e., filtering, peak detection
and segment extraction, where at time ¢ = 0,1,2,... the
last block normalizes each input segment 2z, to a common
length of W samples. The new segment is then stored into a
vector z; € RY and is fed to the PCA encoder. Specifically,
let pr = Elxt] and R — E[:l:ta:%ﬁ] respe~ctively be the
mean of z; and its covariance matrix, with ; = T; — fiy.
PCA amounts to apply an orthonormal linear transformation
W = [1p1,...,¢%w]| to X4, so that the elements wy, ..., wy of
the principal component vector w = U7z, = OT(z; — pg)
are mutually uncorrelated. It can be shown that the i-th
principal component is obtained as w; = ;Z;, where 1; is
the eigenvector corresponding to the i-th largest eigenvalue
of Ry, for ¢ = 1,...,W. The set of eigenvectors corre-
sponding to the W principal components is obtained solving
R,¥ = WA for ¥, where X is a diagonal matrix containing
the eigenvalues Aq,..., A\, placed in decreasing order. As
the theoretical covariance matrix R, is difficult to compute,
a matrix X € RW>*™ is built by stacking m successive ECG
segments: their sample mean fi, and their sample covariance
matrix Ry = (XX7T)/m € RW*W respectively replace
and R, for the calculation of the eigenvectors.

According to the above discussion, we can write
x; = uy + Pw and, if the signal is sufficiently correlated,
only a fraction of the weights in w suffices to accurately
describe the input vector ;. Compression is thus achieved by
applying the PCA transform and sending the desired number
h of principal components, i.e., the first h weights in w, with
h < W. In Section III-D, we follow a similar rationale by
using a particular neural network instance called autoencoder,
which practically acts as a non-linear PCA [51].
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Fig. 3: Graphical representation of an autoencoder: input and
output layers have the same dimension W, whereas the com-
pression layer has h = 2 neurons. g(-) : R — R is assumed to
be the logistic activation function g(z) = (1 + exp(—z))~L.

D. Autoencoders (AE)

An autoencoder [52] is a neural network where input and
output layers have the same dimension W, whereas the deepest
hidden layer has a smaller dimension A, with h < W, as we
show in Fig. 3. With wl(J1 ) (wg-)) we indicate the autoencoder
weights from neuron ¢ to neuron j of the input (output) layer.
Here, autoencoders are used as a non-linear dimensionality
reduction technique to compactly represent the information in
the original segments (of size W) into a much smaller space
(ideally h < W neurons).

The training of this neural network is accomplished through
an unsupervised learning algorithm that uses a number of
training examples z € R" that are placed at the input of
the autoencoder. Specifically, backpropagation is executed by
setting the output y = x so that the neural network weights
wz(yl ),wg.) are adjusted for the autoencoder to behave as an
identity function. In this work, we consider the approach
of [18] where the authors use denoising autoencoders [53]
to approximate the input biomedical patterns.

Once the autoencoder is trained to represent the input
data, weights wl(jl ) fully specify the compressor (encoder),

whereas w@)

;; specify the decompressor (decoder), see Fig. 3.
Signal compression is achieved by applying the preprocessing
chain of Fig. 1, i.e., filtering, peak detection and segment
extraction. Note that the last block also normalizes each
segment to a common length of W samples. Each of such
segments is inputted to the encoder section of the autoencoder,
which returns the h values associated with the neurons in
the compression layer. These h values correspond to the

compressed representation of the current segment and are sent

6

to the decompressor along with the original segment length.
Finally, the decompressor at the receiver uses the values of
these h inner neurons, along with weights wg), to obtain
the reconstructed W-sample vector y through the decoder of
Fig. 3. y is finally resized to the original segment length.

We remark that AE also belongs to the inter-segment cor-
relation class of algorithms as it exploits the fact that patterns
across different segments have a quasi-periodic behavior.

E. Compressive Sensing (CS)

Compressive sensing (CS) is a recently proposed theory [54]
[55] to efficiently acquire and reconstruct a signal, by solving
ill-posed linear systems of equations. This technique is based
upon the premise that the signal of interest is sparse in some
transform domain. This means that, the original signal can
be represented in a domain where only a few transform
coefficients are required for its full description. To be more

specific, let z € RW be an W-sized vector and assume that
this vector can be represented in a K -sparse domain through

the sparse vector s, where only K < W elements of s are non-
zero, i.e., vector s is K-sparse in this domain. If we refer to

the sparsification basis as ¥ € R *W  we have that z = ¥s.

Now, let ® € R™*"W be a sampling matrix. Note that, using
this matrix to sense the full signal &, we have y = ®z + n,

where n € R™ represents the measurement noise, y € R™
and m < W, which means that & is being subsampléd.

CS tools allow the recovery of x from its subsampled
version y, where: y = ®x + n = ®W¥s + n. This is achieved
solving for s the following equation:

ly — @Ws|l <¢ )

where erepresents a bound on the measurement noise. Nu-

min ||s|l; st

merically, a high number of techniques are available to solve
(1); among them we cite ¢1-magic [56] subspace pursuit [57]
and NESTA [58].

In this work, we consider two recent ECG compression
algorithms from [16] and [59], which are based on CS. The
former exploits a technique called Simultaneous Orthogonal
Matching Pursuit (SOMP), whereas the latter uses Block
Sparse Bayesian Learning (BSBL) [60]. The algorithms are
introduced next.

1) SOMP-based CS compression technique (SOMP-CS):
the encoder operates according to the following steps:

o Peak detection: similarly to codebook-based schemes, a
peak detection method is applied to the input signal to
decompose it into segments x;, t = 0,1,2,....

o Period normalization: each segment z; is normalized
to a common length (W samples) using cubic-spline
interpolation. After that, the sparse representation is con-
structed using Daubechies wavelets (db4) [61].

o Sampling and quantization: each 6 consecutive ECG
segments are stored into a W x 6 matrix X. A CS
sampled matrix Y is then obtained as Y = ®X, where
® c R™*W is a suitable sampling matrix, with m < W.
Y and the corresponding original lengths are quantized
and sent to the decoder. Note that this implementation of
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CS belongs to both the inter- and the intra-segment class
as matrix Y spans across different adjoining segments.

The decoder works as follows:

o Simultaneous Orthogonal Matching Pursuit: each seg-
ment is recovered from Y using the modified Simultane-
ous Orthogonal Matching Pursuit [62], which exploits the
structure of the wavelet coefficients.

o Period Recovery: the reconstructed segments are re-
interpolated according to their original lengths.

Note that SOMP-CS considers a number of subsequent
segments (6 in the above description) and, in turn, also
accounts for the “inter-segment” correlation structure of the
ECG signal.

2) Block Sparse Bayesian Learning (BSBL): in CS frame-works

the measured signal is written as y = ¥'z + n,
where y € R™ is the compressed vector, ¥/ = ®W, with
[ A Rmx Wis a suitable transformation matrix (m<K«W),
TER1a sparse vector (being in the transform domain)

and 1€ R"the noise vector. Generally, vector has additional
structure and can be further represented as a con-

catenation of a certain number g of blocks x;, possibly having
different length d; so that x = (21, Zo, . .. ,zg)T. Each block

z; € R 4= 1,..., g, is assumed to satisfy a parametrized
multivariate Gaussian distribution p(z;, 5, B;) ~ N (0, v;B;)
with the unknown parameters 7; and B;. ; > 0 controls the
block-sparsity of x; and when ~; = 0 the ¢-th block

becomes. the all zero vector. B; € R%*diig a positive definite
matrix which captures the correfatlon structure within

the i-th block. Assuming that the sub-blocks z; are uncor-
related the prior of z is p(z, {vi, Bi}) ~ N (0, Xy), where Xy
= diag{11 By, . .. ,fyq B, }. For the noise, it is assumed

;hat? 2 N (0, M), where A € R and I'e R™ ™ is the
identity matrix. The postérior of x (given the measured

vector ) is thus obtained as

p(xly; {vi, Bi}{—1) 2)

where p; and X, can be readily dervied from A, ¥ and W',
Finally, the Maximum-A-Posteriori (MAP) estimate of =z,
denoted by Z, is given by [60]:

[ &= So(@) ALK Wso(w)7. (3)

Thus, the problem boils down to the estimation of the pa-
rameters A and {;, B;}7_,. This is achieved using a Type

II maximum likelihood procedure. Also, different techniques
have been developed according to whether the block partition
is known or not, see [60].

According to the BSBL algorithm, the ECG signal is split
into a number of segments x, each of which consists of W
samples, where W is a tunable parameter. Typical values for m
and W are m = 256 and W = 512, see [59]. The maximum
compression efficiency is thus given by W/m = 2 (in Section
IV, we experiment with different (m, W) pairs). We observe
that BSBL accounts for the intra-block correlation without
considering the correlation structure among subsequent ECG
segments. We thus classify

BSBL as an “intra-segment” compression scheme.

The implementations provided by the authors of [16]
(SOMP-CS) and [59] (BSBL-CS) were used for the numerical
results of Section IV.

F. Discrere Cosine Transform (DCT)

In the signal compression field, Discrete Cosine Transform
(DCT) is often preferred to the Fourier Transform due to its
superior energy compaction capabilities and the fact that it
entails the use of real coefficients. Several ECG compression
methods exploiting DCT have been proposed in the litera-
ture [63]-[68]. Basically, in all of the proposed algorithms
DCT is used to reduce the amount of data to be sent through
the transmission of a subset of transform coefficients, i.e.,
those which carry more information. Some solutions employ
advanced techniques for the pre/post processing of the DCT
coefficients that, however, for wearable devices are expected
to be energetically prohibitive.

In this paper, we consider two DCT based compression
methods that differ in the adopted coefficient selection ap-
proach:

o DCT-Cardinality Thresholding: with this selection
method the number of coefficients to be retained is given
as input, and the coefficients are added starting from the
lowest frequencies, i.e., the leftmost coefficient. Through
this strategy the compression ratio can be finely tuned,
but there are no guarantees on the reconstruction error at
the decompressor.

o DCT-Energy Thresholding: with this method the coef-
ficients are selected so as to meet an energy threshold
constraint. The total energy of the DCT spectrum, F,
is calculated and the coefficients that contain a pre-
determined fraction FEyj of this energy are kept. The
coefficients are selected again from the lowest to the
highest frequencies, exploiting the energy compaction
property of the DCT, so that their frequency position does
not have to be encoded.

G. Discrere Wavelet Transform (DWT)

Wavelet compression schemes are based upon the trans-
mission of a subset of the transform coefficients. In fact, in
the Wavelet domain most of the signal information is often
concentrated in just a few of them. Letting z[n] be the discrete
input temporal signal, defined for n = 0,1,... .M — 1,
in this work we consider the Discrete Wavelet Transform
(DWT) [61], which is defined through the following equations

(pjlc

Vi, k] = Wz

where

pjkln] =

~[4, k] is the DWT coefficient matrix and z[n] can be expressed

as z[n] = (1/VM)>_, Y, klwjk[n]. The parameter so,
called scale step, has a f