7 research outputs found

    Zinc Iodide Catalyzed Synthesis of Trisubstituted Allenes from Terminal Alkynes and Ketones

    Get PDF
    A straightforward, user-friendly, efficient protocol for the one pot, ZnI2-catalyzed allenylation of terminal alkynes with pyrrolidine and ketones, toward trisubstituted allenes, is described. Trisubstituted allenes can be obtained under either conventional heating or microwave irradiation conditions, which significantly reduces the reaction time. A sustainable, widely available, and low-cost metal salt catalyst is employed, and the reactions are carried out under solvent-free conditions. Among others, synthetically valuable allenes bearing functionalities such as amide, hydroxyl, or phthalimide can be efficiently prepared. Mechanistic experiments, including kinetic isotope effect measurements and density functional theory (DFT) calculations, suggest a rate-determining [1,5]hydride transfer during the transformation of the intermediate propargylamine to the final allene.The research project was supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the "1st Call for H.F.R.I. Research Projects to support Faculty Members & Researchers and the procurement of high-cost research equipment grant" (Project Number: 16.Acronym: SUSTAIN). We thank Professor Thomas Mavromoustakos for his advice and support concerning the calculation of the relaxation delay times for the NMR analysis related to the kinetic isotope effect measurements. We also acknowledge the contribution of COST Action CA15106 (C-H Activation in Organic Synthesis.CHAOS). We also thank the Spanish Ministerio de Ciencia e Innovacion (PID2019-110008GB-I00) and IZO-SGI SGIker of UPV/EHU for financial and human support. The Special Account for Research Grants of the National and Kapodistrian University of Athens is also gratefully acknowledged for funding (research program 70/4/17454)

    Synthesis, Characterization, Catalytic Activity, and DFT Calculations of Zn(II) Hydrazone Complexes

    Get PDF
    Two new Zn(II) complexes with tridentate hydrazone-based ligands (condensation products of 2-acetylthiazole) were synthesized and characterized by infrared (IR) and nuclear magnetic resonance (NMR) spectroscopy and single crystal X-ray diffraction methods. The complexes 1, 2 and recently synthesized [ZnL3(NCS)2] (L3 = (E)-N,N,N-trimethyl-2-oxo-2-(2-(1-(pyridin-2-yl)ethylidene)hydrazinyl)ethan-1-aminium) complex 3 were tested as potential catalysts for the ketone-amine-alkyne (KA2) coupling reaction. The gas-phase geometry optimization of newly synthesized and characterized Zn(II) complexes has been computed at the density functional theory (DFT)/B3LYP/6–31G level of theory, while the highest occupied molecular orbital and lowest unoccupied molecular orbital (HOMO and LUMO) energies were calculated within the time-dependent density functional theory (TD-DFT) at B3LYP/6-31G and B3LYP/6-311G(d,p) levels of theory. From the energies of frontier molecular orbitals (HOMO–LUMO), the reactivity descriptors, such as chemical potential (μ), hardness (η), softness (S), electronegativity (χ) and electrophilicity index (ω) have been calculated. The energetic behavior of the investigated compounds (1 and 2) has been examined in gas phase and solvent media using the polarizable continuum model. For comparison reasons, the same calculations have been performed for recently synthesized [ZnL3(NCS)2] complex 3. DFT results show that compound 1 has the smaller frontier orbital gap so, it is more polarizable and is associated with a higher chemical reactivity, low kinetic stability and is termed as soft molecule

    Correlating Structure and KA2 Catalytic Activity of Zn(II) Hydrazone Complexes

    Get PDF
    Two new Zn(II) complexes bearing tridentate hydrazone-based ligands with NNO or NNS donor atoms were synthesised and characterised by elemental analysis, infrared (IR) and nuclear magnetic resonance (NMR) spectroscopies, and single crystal X-ray diffraction methods. These complexes, together with four previously synthesised analogues, having hydrazone ligands with a NNO donor set of atoms, were successfully employed as catalysts in the ketone-amine-alkyne (KA2) coupling reaction, furnishing tetrasubstituted propargylamines, compounds with unique applications in organic chemistry. DFT calculations at the CAM-B3LYP/TZP level of theory were performed to elucidate the electronic structure of the investigated Zn(II) complexes, excellently correlating the structure of the complexes to their catalytic reactivity

    The Ketone-Amine-Alkyne (KA2) coupling reaction: Transition metal-catalyzed synthesis of quaternary propargylamines

    No full text
    “Green chemistry” and sustainable catalysis are increasingly attracting significant attention, in both industry and academia. Multicomponent reactions aim towards “greener” chemical transformations, mostly due to their step economy. The A3 coupling is a widely-studied multicomponent reaction, bringing together aldehydes, amines, and alkynes in a one pot manner, towards tertiary propargylamines, which are highly useful compounds with a variety of applications. The majority of reported synthetic protocols towards propargylamines require the preceding preparation of other starting materials, resulting in the need for increased time investment and cost, as well as encompassing a negative environmental impact. On the other hand, the A3 reaction requires simple, widely-available starting materials and can be completed in one step, making it immensely superior to the conventional approaches. This transformation is carried out by transition metal-based catalysts, which generate the necessary metal acetylides and merge them with the in situ generated aldimines/aldimine cations. Unfortunately, though, due to stereochemical and electronic reasons, ketimines/ketimine cations are way less reactive than their aldimine/aldimine cation counterparts, against nucleophilic attack, making their use in analogous transformations more challenging. This is why only 10 years have passed since the first KA2 reaction was reported (i.e. the one-pot coupling of a ketone with an amine and an alkyne towards quaternary propargylamines). The present review article provides a brief introduction to multicomponent reactions, the existing conventional synthetic routes towards propargylamines, and the A3 coupling reaction. A detailed, critical discussion of all KA2 homogeneous and heterogeneous catalytic protocols, the mechanisms proposed, as well as the difficulties encountered and the strategies employed to circumvent them follows. © 2020 Elsevier B.V

    Hexafluoroisopropanol (HFIP) as a multifunctional agent in gold-catalyzed cycloisomerizations and sequential transformations

    No full text
    Despite the unique position of gold catalysis in contemporary organic synthesis, this area of research is notorious for requiring activators and/or additives that enable catalysis by generating cationic forms of gold catalysts. Cycloisomerization reactions occupy a significant portion of the gold-catalyzed reaction space, while they represent a diverse family of reactions which are frequently utilized in synthesis. Herein, hexafluoroisopropanol (HFIP) is shown to be a uniquely simple tool for gold-catalyzed cycloisomerizations, rendering the use of external activators obsolete, and leading to highly active catalytic systems with ppm levels of catalyst loading in certain cases. HFIP assumes a dual role as solvent and activator, operating via the dynamic activation of the Au-Cl bond through hydrogen bonding, which initiates the catalytic cycle. This special mode of catalysis can enable efficient and scalable cyclization reactions of propargylamides and ynoic acids with simple [AuCl(L)] complexes. A thorough screening of ancillary ligands and counter anions has been performed, establishing this methodology as an alternative to elaborate ligand/catalyst design and to the use of activators. Additionally, this concept is applied in C-C bond forming cycloisomerization reactions leading to 2H-chromenes and to the design of catalytic systems for sequential or one-pot transformations leading to activated ketoesters, a functionalized N-heterocyclic carbene (NHC) precursor salt, and a compound bearing the bioactive indole core, among others. Importantly, through mechanistic investigations including a “snapshot” of the species of interest in the solid state, we were able to unambiguously detect the key H-bonding interaction between HFIP and the gold catalyst, shedding light on the intermolecular mode of activation that enables catalysis. In the cases examined herein, HFIP is not only an excellent solvent, but also a potent activator and a valuable synthetic handle when incorporated into functional groups of products

    Are Terminal Alkynes Necessary for MAO-A/MAO-B Inhibition? A New Scaffold Is Revealed

    No full text
    A versatile family of quaternary propargylamines was synthesized employing the KA2 multicomponent reaction, through the single-step coupling of a number of amines, ketones, and terminal alkynes. Sustainable synthetic procedures using transition metal catalysts were employed in all cases. The inhibitory activity of these molecules was evaluated against human monoaminoxidase (hMAO)-A and hMAO-B enzymes and was found to be significant. The IC50 values for hMAO-B range from 152.1 to 164.7 nM while the IC50 values for hMAO-A range from 765.6 to 861.6 nM. Furthermore, these compounds comply with Lipinski’s rule of five and exhibit no predicted toxicity. To understand their binding properties with the two target enzymes, key interactions were studied using molecular docking, all-atom molecular dynamics (MD) simulations, and MM/GBSA binding free energy calculations. Overall, herein, the reported family of propargylamines exhibits promise as potential treatments for neurodegenerative disorders, such as Parkinson’s disease. Interestingly, this is the first time a propargylamine scaffold bearing an internal alkyne has been reported to show activity against monoaminoxidases

    Synthesis, Characterization, Catalytic Activity, and DFT Calculations of Zn(II) Hydrazone Complexes

    No full text
    Two new Zn(II) complexes with tridentate hydrazone-based ligands (condensation products of 2-acetylthiazole) were synthesized and characterized by infrared (IR) and nuclear magnetic resonance (NMR) spectroscopy and single crystal X-ray diffraction methods. The complexes 1, 2 and recently synthesized [ZnL3(NCS)2] (L3 = (E)-N,N,N-trimethyl-2-oxo-2-(2-(1-(pyridin-2-yl)ethylidene)hydrazinyl)ethan-1-aminium) complex 3 were tested as potential catalysts for the ketone-amine-alkyne (KA2) coupling reaction. The gas-phase geometry optimization of newly synthesized and characterized Zn(II) complexes has been computed at the density functional theory (DFT)/B3LYP/6–31G level of theory, while the highest occupied molecular orbital and lowest unoccupied molecular orbital (HOMO and LUMO) energies were calculated within the time-dependent density functional theory (TD-DFT) at B3LYP/6-31G and B3LYP/6-311G(d,p) levels of theory. From the energies of frontier molecular orbitals (HOMO–LUMO), the reactivity descriptors, such as chemical potential (µ), hardness (η), softness (S), electronegativity (χ) and electrophilicity index (ω) have been calculated. The energetic behavior of the investigated compounds (1 and 2) has been examined in gas phase and solvent media using the polarizable continuum model. For comparison reasons, the same calculations have been performed for recently synthesized [ZnL3(NCS)2] complex 3. DFT results show that compound 1 has the smaller frontier orbital gap so, it is more polarizable and is associated with a higher chemical reactivity, low kinetic stability and is termed as soft molecule. © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)
    corecore