684 research outputs found
Practical, reliable and inexpensive assay of lycopene in tomato products based on the combined use of light emitting diode (LED) and the optothermal window
Light emitting diode (LED) combined with the concept of optothermal window (OW) is proposed as a new approach (LED-OW) to detect lycopene in a wide range of tomato-based products (tomato juice, tomato ketchup, tomato passata and tomato puree). Phytonutrient lycopene is a dominant antioxidant in these products while beta-carotene is present in significantly lower quantities. Therefore for all practical reasons the interfering effect of beta-carotene at 502 nm analytical wavelength can be neglected. The LED-OW method is low-cost and simple, yet accurate and precise. The major attributes of the new method are its rapid speed of response and the fact that no preparation whatsoever of the sample is needed before the analysis. The lycopene found in tomato products studied here varies from 8 mg/100 g to 60 mg/100 g fresh product. Results obtained by LED-OW method were compared to the outcome of conventional, time consuming spectrophotometric methods and the correlation was very good (R = 0.98). Precision of the LED-OW instrumental setup ranged from 0.5 to 7.4%; the RSD achieved for lycopene-richest samples (= 40 mg/100 g) did not exceed 1.7%. Repeatability of analysis by LED-OW was found to vary between 0.7 and 7.1%
Preliminary results of the Italian neutron experimental station INES at ISIS: Archaeometric applications
The INES project was sponsored by the CNR Neutron Spectroscopy Advisory Committee, stressing the importance of realizing an Italian Neutron Experimental Station (INES) at the world most powerful pulsed neutron source (ISIS,
Rutherford Appleton Laboratory, UK) and evidencing the strategic value that such a test station would assume in the field of applied sciences like, for example, chemistry,
material science, Earth science, crystallography, and last, but not least, in the field of science applied to the study of cultural-heritage artifacts
Preliminary results of the Italian neutron experimental station INES at ISIS: Archaeometric applications
The INES project was sponsored by the CNR Neutron Spectroscopy Advisory Committee, stressing the importance of realizing an Italian Neutron Experimental Station (INES) at the world most powerful pulsed neutron source (ISIS,
Rutherford Appleton Laboratory, UK) and evidencing the strategic value that such a test station would assume in the field of applied sciences like, for example, chemistry,
material science, Earth science, crystallography, and last, but not least, in the field of science applied to the study of cultural-heritage artifacts
Life cycle assessment of the biofuel production from lignocellulosic biomass in a hydrothermal liquefaction - aqueous phase reforming integrated biorefinery
The use of biofuels in the transport sector is one of the strategies for its decarbonization. Here, the LCA meth-odology was used for the first time to assess the environmental impacts of a biorefinery where hydrothermal liquefaction (HTL) and aqueous phase reforming (APR) were integrated. This novel coupling was proposed to valorize the carbon loss in the HTL-derived aqueous phase, while simultaneously reducing the external H2 de-mand during biocrude upgrading. Corn stover (residue) and lignin-rich stream (waste) were evaluated as possible lignocellulosic feedstocks. The global warming potential (GWP) was 56.1 and 58.4 g CO2 eq/MJbiofuel, respec-tively. Most of the GWP was attributable to the electrolysis step in the lignin-rich stream case and to the thermal duty and platinum use in the corn stover case. Other impact categories were investigated, and an uncertainty analysis was also carried out. A sensitivity analysis on biogenic carbon, electricity/thermal energy source and alternative hydrogen supply was conducted to estimate their influence on the GWP. Finally, the two scenarios were compared with the environmental impact of fossil-and other biomass-derived fuels, also considering fuel utilization. HTL-APR allowed a 37% reduction compared to fossil diesel, further reduced to 80% with the lignin -rich stream when green energy was used
Recommended from our members
Bundle folding type III Bricard linkages
The paper presents a set of one-degree-of-freedom overconstrained linkages, which can be folded into a bundle and deployed into a polygon on a plane. The proposed mechanisms are movable Bricard octahedra of type III, characterized by the existence of two configurations where all joints are coplanar. The possible geometries of doubly-collapsible Bricard linkages are parameterized and their kinematics is analyzed. A line-intersection method is proposed to construct a bundle-folding mechanism of this type. Necessary and sufficient conditions are derived for the deployed-configuration polygon to be a square. Simulation and prototype experiment results validate the analysis and design.This research has been supported by the National Natural Science Foundation of China under Grant 51605011, 51635002(Key Program), the Fundamental Research Funds for the Central Universities (YWF-19-BJ-J-336), the State Key Laboratory of Robotics and System (HIT), and the AUTORECON project funded under the Seventh Framework Program of the European Commission (Collaborative Project NMP-FOF-2011-285189). The authors gratefully acknowledge the supporting agencies
Aqueous phase reforming of the residual waters derived from lignin-rich hydrothermal liquefaction: investigation of representative organic compounds and actual biorefinery streams
Secondary streams in biorefineries need to be valorized to improve the economic and environmental sustainability
of the plants. Representative model compounds of the water fraction from the hydrothermal liquefaction
(HTL) of biomass were subjected to aqueous phase reforming (APR) to produce hydrogen. Carboxylic and bicarboxylic
acids, hydroxyacids, alcohols, cycloketones and aromatics were identified as model compounds and
tested for APR. The tests were performed with a Pt/C catalyst and the influence of the carbon concentration
(0.3–1.8 wt. C%) was investigated. Typically, the increase of the concentration negatively affected the conversion
of the feed toward gaseous products, without influencing the selectivity toward hydrogen production. A
synthetic ternary mixture (glycolic acid, acetic acid, lactic acid) was subjected to APR to evaluate any differences
in performance compared to the tests with single compounds. Indeed, glycolic acid reacted faster in the mixture
than in the corresponding single compound test, while acetic acid remained almost unconverted. The influence
of the reaction time, temperature and carbon concentration was also evaluated. Finally, residual water resulting
from the HTL of a lignin-rich stream originating from an industrial-scale lignocellulosic ethanol process was
tested for the first time, after a thorough characterization. In this framework, the stability of the catalyst was
studied and found to be correlated to the presence of aromatics in the aqueous feedstock. For this reason, the
influence of an extraction procedure for the selective removal of these compounds was explored, leading to an
improvement in the APR performance
- …