616 research outputs found

    Analysis of strong ground motions to evaluate regional attenuation relationships

    Get PDF
    Italian attenuation relationships at regional scale have been refined using a data set of 322 horizontal components of strong ground motions recorded mainly during the 1997-1998 Umbria-Marche, Central Italy, earthquake sequence. The data set includes records generated by events with local magnitude (M L ) ranging between 4.5 and 5.9, recorded at rock or soil sites and epicentral distance smaller than 100 km. Through a multiple step regression analysis, we calculated empirical equations for the peak ground acceleration and velocity, the Arias Intensity and for the horizontal components of the 5% damped velocity pseudo response spectra, corresponding to 14 frequencies ranging from 0.25 to 25 Hz. We compared our results with well known predictive equations, widely used on the national territory for Probabilistic Seismic Hazard Analysis. The results obtained in this study show smaller values for all the analyzed ground motion indicators compared to other predictive equations

    Modeling the 1980 Irpinia earthquake by stochastic simulation. Comparison of seismic scenarios using finite-fault approaches

    Get PDF
    To define more accurately the near field and the directivity effect, different methodologies of finite-fault modelling have been used to describe the behaviour of ground shaking based on deterministic, stochastic and hybrid stochastic-deterministic approaches as in the framework of the ongoing European project “LESSLOSS – Risk Mitigation for Earthquakes and Landslides”. In this study, we simulate and compare seismic scenarios obtained from the complex source characteristic of the 1980 Irpinia earthquake, M 6.9, Southern Italy, using models based on the source models hypothesized in Bernard and Zollo (1989) and in Valensise et al. (1990). Furthermore, two finite-fault numerical approaches are used: 1. The approach RSSIM [Carvalho et al., 2004] that is a non-stationary stochastic simulation method that synthesizes the ground motion due to an extended source; 2. The approach EXSIM [Motazedian and Atkinson, 2005] that is a new version of FINSIM [Beresnev and Atkinson, 1998] introducing a new variation based on a “dynamic corner frequency”. The shaking scenarios are computed in terms of Response Acceleration Spectra (PSA), time series, peak ground acceleration (PGA) at bedrock level. Source and path propagation parameters taken from other studies were tested and the computed shaking scenarios are compared to acceleration records to eight different stations. Preliminary results are here presented in terms of PGA maps for the Campania region (Southern Italy)

    Bayesian analysisof a probability distribution for local intensity attenuation

    Get PDF
    Intensity attenuation and its variation as a function of the distance and earthquake size is still a critical issue in evaluating seismic hazard. We present a method that allows us to incorporate additional information from the historical earthquake felt reports in the probability estimation of local intensity attenuation. The approach is based on two ideas: a) standard intensity versus epicentral distance relationships constitute an unnecessary filter between observations and estimates; and b) the intensity decay process is affected by many, scarcely known elements (the physical parameters of the source, propagation path effects, building vulnerability, the semi-qualitative character of macroseismic scales, etc.). Hence intensity decay should be treated as a random variable as is the macroseismic intensity. We assume here that decay, defined on the set {0,1, ..., I0}, follows a binomial distribution with parameters (I0, p); p depends on the distance from the epicenter and is related to the probability of null decay at that distance. According to the Bayesian approach this p parameter is, in turn, a Beta random variable. The observations related to earthquakes with their epicenter outside the area concerned, but belonging to homogeneous zones, are used as prior knowledge of the phenomenon, while the data points of events inside the area are used to update the estimates through the posterior means of the quantities involved. Our methodology is described in detail in an application to the Umbria-Marche area in Central Italy. The data sets examined are the macroseismic intensity database DOM4.1 and the zonation ZS.4, both compiled by the Italian Group for Defence against Earthquakes (GNDT). The method is validated by comparing the observed and the estimated intensity data points of the Camerino (28/07/1799) and of the Colfiorito (26/09/1997) earthquakes

    Bayesian analysis of the local intensity attenuation

    Get PDF
    We present a method that allows us to incorporate additional information from the historical earthquake felt reports in the probability estimation of local intensity attenuation. The approach is based on two ideas: a) standard intensity versus epicentral distance relationships constitute an unnecessary lter between observations and estimates; and b) the intensity decay process is a ected by many, scarcely known elements; hence intensity decay should be treated as a random variable as is the macroseismic intensity. The observations related to earthquakes with their epicenter outside the area concerned, but belonging to homogeneous zones, are used as prior knowledge of the phenomenon, while the data points of events inside the area are used to update the estimates through the posterior means of the quantities involved

    Mining Macroseismic Fields to Estimate the Probability Distribution of the Intensity at Site

    Get PDF
    The analysis of the seismic attenuation is a prominent and problematic component of hazard assessment. Over the last decade it has become increasingly clear that the intrinsic uncertainty of the decay process must be expressed in probabilistic terms. This implies estimating the probability distribution of the intensity at a site Is as the combination of the distribution of the decay DI and of the distribution of the intensity I0 found for the area surrounding that site. We focus here on the estimation of the distribution of DI. Previous studies presented in the literature show that the intensity decay in Italian territory varies greatly from one region to another, and depends on many factors, some of them not easily measurable. Assuming that the decay shows a similar behavior in function of the epicenter-site distance when the same geophysical conditions and building vulnerability characterize different macroseismic fields, we have classified some macroseismic fields drawn from the Italian felt report database by applying a clustering algorithm. Earthquakes in the same class constitute the input of a two-step procedure for the Bayesian estimation of the probability distribution of I at any distance from the epicenter, conditioned on I0, where DI is considered an integer, random variable, following a binomial distribution. The scenario generated by a future earthquake is forecast either by the predictive distribution in each distance bin, or by a binomial distribution whose parameter is a continuous function of the distance. The estimated distributions have been applied to forecast the scenario actually produced by the Colfiorito earthquake on 1997/09/26; for both options the expected and observed intensities have been compared on the basis of some validation criteria. The same procedure has been repeated using the probability distribution of DI estimated on the basis of each class of macroseismic fields identified by the clustering algorithm

    Time- and Angle-Resolved Photoemission Studies of Quantum Materials

    Full text link
    Angle-resolved photoemission spectroscopy (ARPES) -- with its exceptional sensitivity to both the binding energy and momentum of valence electrons in solids -- provides unparalleled insights into the electronic structure of quantum materials. Over the last two decades, the advent of femtosecond lasers, which can deliver ultrashort and coherent light pulses, has ushered the ARPES technique into the time domain. Now, time-resolved ARPES (TR-ARPES) can probe ultrafast electron dynamics and the out-of-equilibrium electronic structure, providing a wealth of information otherwise unattainable in conventional ARPES experiments. This paper begins with an introduction to the theoretical underpinnings of TR-ARPES followed by a description of recent advances in state-of-the-art ultrafast sources and optical excitation schemes. It then reviews paradigmatic phenomena investigated by TR-ARPES thus far, such as out-of-equilibrium electronic states and their spin dynamics, Floquet-Volkov states, photoinduced phase transitions, electron-phonon coupling, and surface photovoltage effects. Each section highlights TR-ARPES data from diverse classes of quantum materials, including semiconductors, charge-ordered systems, topological materials, excitonic insulators, van der Waals materials, and unconventional superconductors. These examples demonstrate how TR-ARPES has played a critical role in unraveling the complex dynamical properties of quantum materials. The conclusion outlines possible future directions and opportunities for this powerful technique.Comment: To appear in Reviews of Modern Physic

    Stochastic Finite-Fault Ground Motion Simulation in a Wave Field Diffusive Regime: Case Study of the Mt. Vesuvius Volcanic Area

    Get PDF
    The main aim of the present work consists in the validation of stochastic method for simulating weak ground motion in a diffusive regime due to low-to-moderate magnitude earthquakes, and in particular in its application to a volcanic area. We simulated the peak ground acceleration and the response acceleration spectra caused by two earthquakes scenarios (MD = 4.3 and MD = 5.4) at Mt. Vesuvius volcanic area by using the stochastic finite-fault simulation method. We validated the stochastic methodology by combining source, path and site parameters of the investigated area considering the time duration parameter, Trms, calculated on the study seismograms. The values of time durations are confirmed by calculating the same parameter, Trms, on the seismogram energy envelope described by multiple scattering models, in terms of scattering and the intrinsic dissipation coefficient. Initially, the simulations were evaluated for 10 local earthquakes (1.7 ≤ MD ≤ 3.6) that occurred at Mt Vesuvius in 1999 and are then compared with the observed data. The comparison between simulated and observed seismograms has been used to calibrate the stochastic procedure, and has been considered as the starting point for simulating ground motion for the scenario earthquake (MD > 3.6) that could occur in the study area. The scenario earthquake and the relative fault features were chosen on the base of statistical, tectonic, structural and historical studies of the study area. We simulated ground motions for a maximum magnitude value, Mmax, of 4.3, determined from examination of the Gutenberg-Richter law for the study area, and also for an Mmax = 5.4, a magnitude that is associated with the earthquakes that struck the ancient town of Pompei 17 years before the eruption of Mt Vesuvius that occurred in 79 AD. The largest values of Amax for the MD = 4.3 seismic event are in the range of 0.140 g to 0.029 g. In the case of MD = 5.4, we obtain PGA values in the range between 0.17 and 0.55 g

    Vulnerability of Building, urban infrastructure and system: The case of Mt. Etna

    Get PDF
    Natural disasters, such as earthquakes and volcanoes, have strong effects on the socio-economic wellbeing of countries and their people. The consequences of these events can lead to complex cascades of related incidents; when these expand across sectors and borders, and in more serious contexts, they can threaten our basic survivability. These events have clearly demonstrated that preparedness and disaster management is a dynamic process that requires a holistic analysis of critical interdependencies among core infrastructures. In this context of complexity, uncertainty and doubt, the Disruption Index (DI) proposed in the framework of the UPStrat-MAFA project aims to improve our understanding of earthquake and volcano hazards and their impacts. Several guiding principles and methods have been developed to serve as the basis to measure the different earthquake impacts, with analysis and discussion of the data that provide clearer pictures of how the systems and the disruption of their functionality affect an urban area. The main concepts that explain the DI can be found in Ferreira et al. (2014). Constructing the DI requires good quality information about the physical, spatial and vulnerability conditions of the study area; this means the information that reflects the full knowledge of the true situatio

    The evolution of the reading profile in children with developmental dyslexia in a regular ortographies

    Get PDF
    Several researchers have demonstrated that dyslexia develops differently in shallow orthographies in terms of accuracy and speed. In fact, slow reading speed persists and accuracy improves. The aim of this study is to investigate the evolution of the specific reading disorder over the years of compulsory education, from primary to upper secondary school. Furthermore, it has the aim to verify if there are different evolutionary trajectories of reading skills in relation to the severity of the disorder. The study was carried out on 71 Italian dyslexic children, according to the diagnostic criteria established by the diagnostic manual ICD – 10 and the Consensus Conference. Two groups were selected: children who met criteria for mild dyslexia (mild dyslexics, with n=36) and a comparison group of moderate-severe dyslexics (n=35). All participants were tested at least twice in two different school grades. Comparisons were made on the average performances in each school grade. The results reveal similar patterns of growth over time in reading ability, with the mild dyslexics group outperforming the moderate-severe dyslexics group. The performance trajectory for the moderate-severe dyslexics shows some plateaus and a decrease in performances in the last year analyzed (1st upper secondary school) while the trajectory for the mild dyslexics always show increases in performances. All subjects show a steady increase in word and text reading speed and a slower improvement in pseudo-word decoding
    • …
    corecore