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Abstract

The analysis of the seismic attenuation is a prominent and problematic component of

hazard assessment. Over the last decade it has become increasingly clear that the intrinsic

uncertainty of the decay process must be expressed in probabilistic terms. This implies

estimating the probability distribution of the intensity at a site Is as the combination of

the distribution of the decay ∆I and of the distribution of the intensity I0 found for the

area surrounding that site. We focus here on the estimation of the distribution of ∆I.

Previous studies presented in the literature show that the intensity decay in Italian territory

varies greatly from one region to another, and depends on many factors, some of them

not easily measurable. Assuming that the decay shows a similar behavior in function of

the epicenter-site distance when the same geophysical conditions and building vulnerability

characterize different macroseismic fields, we have classified some macroseismic fields drawn

from the Italian felt report database by applying a clustering algorithm. Earthquakes in

the same class constitute the input of a two-step procedure for the Bayesian estimation of

the probability distribution of ∆I at any distance from the epicenter, conditioned on I0,

where ∆I is considered an integer, random variable, following a binomial distribution. The

scenario generated by a future earthquake is forecast either by the predictive distribution in

each distance bin, or by a binomial distribution whose parameter is a continuous function of

the distance. The estimated distributions have been applied to forecast the scenario actually

produced by the Colfiorito earthquake on 1997/09/26; for both options the expected and

observed intensities have been compared on the basis of some validation criteria. The same

procedure has been repeated using the probability distribution of ∆I estimated on the basis

of each class of macroseismic fields identified by the clustering algorithm.

1 Introduction

Most of the relationships proposed in the literature as models of seismic intensity attenuation

come either from a physically consistent approach to the problem or from empirical analysis of

the increase in intensity decay as the distance between epicenter and site increases. The former

includes the papers by Gupta and Nuttli (1976) and by Von Kovesligethy (1906), which correlate

the intensity with the ratio between the amplitude and the period of the seismic waves, and with

the maximum acceleration, respectively. The latter examines the functional relations between

intensity decay and distance deduced from the empirical evidence: the logarithm (Grandori et
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al., 1987), the square and cubic root (Berardi et al., 1993), and the bilinear model (Gasperini,

2001) are the most frequently applied functions. The qualitative nature of the intensity and

the influence of source and site responses on the decay process cause a huge dispersion of the

observations. This uncertainty is generally dealt with by including in the model a gaussian error

centered on the value of the above relationships with an assigned standard deviation.

As we think that the stochastic nature of the variable ∆I must be exploited from the start

in assigning the intensity attenuation, we invert the usual manner of approach: we make no

assumption regarding the functional relation between intensity decay and distance, but let the

observations determine specific probability distributions for the random variables of the process,

according to the local characteristics of the seismic energy propagation. Recent studies of all of

Italy (Carletti and Gasperini, 2003) have shown the strong variability of the attenuation prop-

erties from one region to another. We consequently employ a hierarchical clustering algorithm

to initially decompose a set of macroseismic fields representative of the temporal and spatial

distribution of seismicity in Italy in order to select subsets of fields that are homogeneous from

the viewpoint of attenuation. As the difference in trends depends on many geological charac-

teristics, some of them not available nor easily measured (focal depth, heat flow, topographical

and geological characteristics of the site), we apply a clustering procedure to the location and

dispersion measures computed for each set of epicenter-site distances for which the same inten-

sity was recorded. In Section 2.1 we describe the hierarchical agglomerative clustering method

employed.

In this way we identify three classes CA, CB, CC of macroseismic fields of decreasing attenu-

ation. To each of these classes we have applied the probabilistic analysis presented in Rotondi

and Zonno (2004) to estimate the probability distribution of the intensity at a site conditioned

on I0 and the epicenter-site distance (Section 2.2). The analysis is performed within a Bayesian

framework, which allows us to exploit different sources of information. Assuming, for instance,

that the epicentral intensity is equal to the VIII degree of the Mercalli-Cancani-Sieberg (MCS)

scale (Sieberg, 1931) and that we are considering class CA, we can draw prior information on the

model parameters from the macroseismic fields in this class with I0 6= V III. We then update

the parameters, considering fields of the same class, but with I0 = V III. To respect as much as

possible the ordinal nature of the intensity variable, we have chosen as its probability distribution

a discrete, binomial distribution on [0, I0] whose parameter p is considered a beta distributed

random variable according to the Bayesian approach. Because the attenuation depends on the

epicenter-site distance, the data are subdivided in distance bins around the epicenter, and the

different distributions estimated for each bin.

In this way the posterior distribution of the p parameter summarizes the knowledge contained

in the data set. Before a new observation is recorded, the expected likelihood with respect to the

posterior distribution of p expresses the uncertainty regarding its value; this function is called

the predictive distribution. In Section 2.3 it has been computed for the case of the binomial-beta

model, obtaining the probability distribution of the future felt intensity in each distance bin,

given I0. Moreover, by smoothing the posterior means of p in each bin, we express the parameter

as a function of the distance considered as a continuous variable. The binomial distribution in

which the parameter is given by this function can be used instead of the predictive distribution
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to predict the site intensity at any distance from the epicenter. To test these clustering and

estimation procedures we have forecast the scenario actually observed in the Italian Colfiorito

earthquake of 26 September 1997 (Section 3). This event is of course subsequent to those

forming the data set used to define the procedure just outlined. For both the predictive and

the smoothed binomial distributions the forecasting is given in terms of mode, probability of

exceeding a given intensity, and value of Is not exceeded with at least a fixed probability value.

The scenarios estimated for each of the three classes CA, CB, CC are compared through three

different validation criteria. Some remarks and the still unresolved issues indicated in Section 4

conclude the paper.

2 From macroseismic fields to intensity at site through proba-

bility distributions

The logical route we have covered to arrive at the characterization of the intensity at a site in

terms of probability distribution starting from macroseismic fields can be described by listing

the issues (I) that we have encountered and the solutions (A) that we have proposed.

Issue 1. Reducing the complexity of the data set?

In order to examine the macroseismic fields of a set of earthquakes representative of the

spatial distribution of seismicity in Italy, we chose the 55 earthquakes with good quality macro-

seismic data sets already studied in Cella et al. (1996) and Peruzza (1996). They cover the

period between 1560 and 1980 and are of an intensity between the VII and XI degree of the

MCS scale. Their epicentral location is shown in Figure 1, while Table 1 provides the date,

epicentral coordinates, epicentral macroseismic intensity, and number of felt reports for each

earthquake. The corresponding macroseismic fields have been taken from the DBMI04 Ital-

ian database (see Data and Resources Section), considering only the intensity points for which

numerical values were available; we have neglected the codes used for classifying effects not

assessable in terms of macroseismic intensity like environment effects (EE), information coming

from single buidings (SB) or small settlements (SS), and effects concerning an extended territory

(TE) (Stucchi et al. (2007)). In this way we have formed a large data set with thousands of

observations.

Table 1 and Figure 1 about here

Figure 2 is a graphic representation of some macroseismic fields chosen from the data set to

show the different decay trends we saw when the same descriptive analysis was performed on

the entire data set. The red dots mark the intensity decay versus the epicenter-site distance;

the blue dots are the median values of distances of the same ∆I. The problem then was to find

the way of summarizing the data and quantifying their basic features, that is, how to extract

the implicit, hidden information from the data in order to identify meaningful patterns.
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Figure 2 about here

Answer 1. Choice of summaries

Sets of observations are commonly summarized through measures of location (or central ten-

dency) such as the arithmetic mean, the median, or the mode, and measures of dispersion or

variability, such as the standard deviation, or the interquartile range. We have expressed every

macroseismic field of the data set as a 3 × I0 matrix (see, for example, Table 2), by evaluating

the median, mean, and 3rd quartile of each set of epicenter-site distances with the same ∆I.

The data in Table 2 are incomplete because ∆I = I0 − 1 = 6 was not recorded in any site.

Table 2 about here

Issue 2. Identifying similar behaviors

Then, setting the rows of each of the 55 tables in a single line, we collected the entire data

set together in a (55 × 3 I0) matrix. In this way we passed from thousands of observations to

less than 1500 data which still preserve most of the information contained in the original 55

macroseismic fields. As we have observed above, the attenuation trend of some of these fields

seem similar, but how and on what basis can the “similar” ones be recognized?

Answer 2. Clustering techniques

The object is to form groups such that elements in the same group are similar to each other,

whereas those in different groups are as dissimilar as possible. Following the terminology of

cluster analysis we have n = 55 objects to be clustered, each of them represented by p = 3 I0

attributes, which we have arranged in an n-by-p matrix X . The next step consists in computing

the distance between each pair of objects i and j in order to quantify their degree of dissimilarity.

The most popular choices are the Euclidean distance and the city block or Manhattan distance,

defined respectively by:

d(i, j) =
√

(xi1 − xj1)2 + (xi2 − xj2)2 + . . . + (xip − xjp)2

and

d(i, j) =| xi1 − xj1 | + | xi2 − xj2 | + . . . + | xip − xjp | (1)

where (xi1, xi2, . . . , xip) and (xj1, xj2, . . . , xjp) are the attributes of the two objects, each a row of

the X data matrix. We have preferred the Manhattan distance (1) because it is not particularly

sensitive to outliers in the sense that a single outlying measurement will not have an exaggerated

influence on d(i, j). We have evaluated the resulting n by n matrix D of dissimilarities by

applying the subroutine DAISY of the S-Plus library, version 6.2.1. (S-Plus, 2003). This is

a symmetric matrix and therefore we need to store only its lower triangular half. As already
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noted in Table 2 not all the measurements may actually be available. In these cases, if ng

is the number of the columns of X in which neither row i nor j have missing data, then the

dissimilarity returned by the algorithm is p/ng times the dissimilarity d(i, j) (1) between the

two vectors of length ng shortened to exclude the missing values.

The matrix thus obtained can now be used as the input data structure of clustering algorithms,

either partitioning or hierarchical. The former divide tha data set into k clusters, where the

interger k must be specified, whereas the latter deal with all values of k in the same run. Since

the identification of the number k of different attenuation trends is one of the objectives of our

analysis, we have used a hierachical agglomerative algorithm (Kaufman and Rousseeuw, 1990)

implemented by the AGNES routine of the S-Plus library.

2.1 Building classes of macroseismic fields

In agglomerative clustering methods each object is initially considered as a separate cluster: at

step 0 one has n clusters, in the first step the two objects with the least dissimilarity are joined

in a cluster, and in all the successive steps the two closest clusters are merged until only one

cluster is left. Agglomerative algorithms are characterized by the definition of between-cluster

dissimilarity. According to the complete linkage (or furthest neighbour) method the dissimilarity

between two clusters R,Q is defined as the greatest dissimilarity between an object i of the one

cluster and an object j of the other cluster, that is

d(R,Q) = max
i∈R, j∈Q

d(i, j) .

In the single linkage (or nearest neighbour) method the dissimilarity is given by the least dis-

similarity between an object i of R and an object j of Q:

d(R,Q) = min
i∈R, j∈Q

d(i, j) .

The difference between these inter-cluster distances is highlighted by the bidimensional repre-

sentation (p = 2) of the resulting groups. The single-linkage method tends to form elongated

clusters where some members may be very far from each other. This property, called the chain-

ing effect, is an advantage in some applications, but in general renders the method undesirable

because poorly separated clusters are linked together. The opposite holds for the complete link-

age method which tends to produce very compact clusters of strongly similar objects with the

disadvantage that relatively similar objects may remain in different clusters for many cycles of

the clustering algorithm. For this reason complete linkage is said to be space dilating. To mediate

between these two extremes other space conserving inter-cluster distances have been proposed

by Späth (1980), Anderberg (1973), and in particular Ward (1963), who devised a procedure to

partition a set so as to minimize the loss of information associated with each grouping: let x̄R

denote the centroid of the cluster R, defined by x̄k = 1/mR
∑

i∈R xik, k = 1, . . . , p, that is, the

point in the p-dimensional space whose coordinates are the arithmetic mean of the attributes of

the mR objects in the cluster R. Ward defined the information loss associated with this cluster

in terms of the error sum of centroid-object distances

ER =
∑

i∈R

d(xi, x̄R) .
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At each step the union of every possible pair of clusters R, Q, generating a new cluster T , is con-

sidered, and the two clusters whose merger results in the minimum increase ∆E in information

loss are combined; hence ∆E is given by

∆E = min
R,Q

∆ERQ = ET − ER − EQ .

In varying the between-object and between-cluster dissimilarities, the user is faced with a mul-

titude of methods to choose from. Some quantitative and graphic measures of the clustering

structure can be used to this end: the agglomerative coefficient AC, the overall average silhouette

width and its plot (Rousseeuw, 1987), the dendrogram or cluster tree (Kaufman and Rousseeuw,

1990).

The hierarchy produced by the AGNES algorithm is well displayed graphically as a tree

in which the leaves represent the objects, while the vertical coordinates of the junction of two

branches are the dissimilarities between the corresponding clusters (Struyf et al., 1996). An

example of this agglomerative tree, which we will discuss later, is given in Figure 3.

Figure 3 about here

For each object i, i = 1, . . . , n, let us denote by l(i) its dissimilarity to the first cluster it is

merged with, divided by the dissimilarity of the merger in the final step of the algorithm. The

AC is the average of all (1− l(i)), a value between 0 and 1 which describes the strength of the

clustering structure obtained by the clustering algorithm. The higher the AC value, the clearer

the clustering structure.

The silhouette value s(i) of each object is computed as follows: let A be the cluster to which

object i belongs and a(i) the average dissimilarity of i to all other objects in A. Then let us

consider any cluster C different from A and let d(i, C) be the average dissimilarity of i to all

objects of C. After identifying the cluster B such that

b(i) = d(i, B) = minC 6=Ad(i, C) ,

we define s(i):

s(i) =
b(i)− a(i)

max {a(i), b(i)}
.

B is the neighbor of object i and the second-best cluster for object i. The value s(i) always lies

between -1 and +1, and it is clear that if s(i) ≈ 1, object i is well classified, whereas if s(i) ≈ −1,

object i is badly classified. The overall average silhouette width is then defined as the average

of the s(i) over all objects i in the data set. The graphic representation of this quality index is

a plot showing the silhouettes of all clusters next to each other, where the silhouette of a cluster

is a plot of the s(i), ranked in decreasing order, of all its objects i. The subroutine CUTREE

of the S-Plus library provides a division of the tree produced by AGNES into a fixed number

k of groups (Venables and Ripley, 2002): climbing the tree in Figure 3 and cutting in turn the

branches at the junctions with the highest dissimilarity, at the fourth cut we have k = 5 well-

separated groups, the three differently coloured and the two single earthquakes of 1875/12/06
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and 1743/02/20. The corresponding silhouette plot, produced by the R free software (R De-

velopment Core Team, (2008)), is given in Figure 4 (top) with an average silhouette width of 0.26.

Figure 4 about here

Let us go back to the tree in Figure 3. It is obtained with the Manhattan metric and Ward’s

method, and its agglomerative coefficient is AC = 0.9517. We have also considered other hier-

archical agglomerative methods: single-, complete-, average-linkage, and the Euclidean metric.

We decided on the Manhattan-Ward combination for its quality indices and the sharpness of

the clustering structure. In fact the largest agglomerative coefficient, AC = 0.9544, associated

with the Manhattan-complete linkage combination, is just little higher than the second best

value, AC = 0.9517, of the Manhattan-Ward combination, whereas the clustering structure pro-

duced through Ward’s method and indicated by the silhouette plot in Figure 4 (top) shows a

clearer and more homogeneous partition of the data than that of the silhouette plot generated

by the complete-linkage method (Figure 4, bottom). Consequently, we consider the data set to

be formed mainly by three classes. The isolated earthquakes 1875/12/06 and 1743/02/20 are

considered to have an atypical, not generalizable behavior and therefore are not classified.

Now we must see if the clustering technique applied has been able to answer Issue 2 or,

in other words, if the classes identified are really characterized by similar attenuation trends.

To do so we reorganize Figure 2 ordering the macroseismic fields according to the classification

just found. The result is shown in Figure 5. The A column, on the left, contains the fields of

the earthquakes with the steepest attenuation trend, indicated in yellow in Figure 3. The B

column, in the middle, corresponds to the earthquakes with a less steep trend, red in Figure 3.

The C column on the right gathers fields presenting a flatter attenuation trend, violet in Figure

3. Comparing the different trends from left to right we may conclude that the result of the

clustering process is visually consistent. Figure 6 shows the spatial distribution of the resulting

three classes of attenuation.

Figures 5 and 6 about here

2.2 Probabilistic model

Having grouped the set of macroseismic fields in homogeneous classes we can now address the

problem of attenuation modelling in the strict sense. First of all we must consider the nature

of the intensity decay ∆I. It is a variable affected by intrinsic uncertainty that is expressed

suitably through an additional Gaussian error; for instance, Figure 7 represents the relative

frequencies of the decay recorded in distance bins 10 km wide around the epicenter of the 1980

Irpinia-Basilicata earthquake, a shock of I0 = X with a rich macroseismic field of 1161 data

points from ∆I = 0 to ∆I = V II. We note that as we move away from the epicenter, the

empirical probability function of ∆I runs along the domain {0, 9}, taking different shapes.
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Figure 7 about here

Hence the intensity decay ∆I, like the macroseismic intensity, must to be treated as a random

variable. As the variable ∆I is discrete and belongs to the domain {0, I0 − 1} it is reasonable to

choose for Is = I0 −∆I, at a fixed distance, the binomial distribution Bin(is|I0, p) conditioned

on I0 and p:

Pr {Is = i | I0 = i0, p} = Pr {∆I = I0 − i | I0 = i0, p}

=

(

i0

i

)

pi(1− p)i0−i i ∈ {0, 1, . . . , i0} . (2)

and then restrict the support to be {1, I0} by defining Pr {Is = 1} = Pr {Is ≤ 1}. Moreover,

since the ground shaking may differ even among sites located at the same distance, we consider

p as a random variable which follows a Beta distribution:

Be(p;α, β) =
Γ(α + β)

Γ(α)Γ(β)

∫ p

0
xα−1(1− x)β−1dx . (3)

To analyze the probability distribution of ∆I, or analogously of Is, given the epicentral intensity

I0, we follow the approach described in detail in Rotondi and Zonno (2004), with a modification

in particular in the way of assigning the parameters α and β of the prior distribution (3).

We let nA be the number of macroseismic fields of the data set in the class CA and, among

these, let nAi and nA i be those with epicentral intensity I0 = i and with any epicentral in-

tensity except I0 = i respectively, i = 7, . . . , 11, analogously for classes CB and CC. Hence

n =
∑11

i=7(nAi + nBi + nCi) = 53 (as the two atypical fields were not classified). To extract

information from the historical data in order to assign the prior distributions we first draw L

distance bins around the epicenter of every macroseismic field and indicate by N
(k)
j the number

of observed intensities at the jth bin (j = 1, . . . , L) of the kth earthquake (k = 1, . . . , n), and by

N
(k)
j (I0) the number of those data points with Is = I0, or the number of sites where the decay

is null. For the sake of simplicity we consider an earthquake with I0 = 9 classified in class CA

and, to assign the prior distributions, extract the information from the macroseismic fields of

the same class, but with I0 6= 9, by applying the following algorithm:

step 1. assign a priori value to the parameter pj,0 of each bin, j = 1, . . . , L; initialize j = 0:

(a) j ← j + 1,

(b) for each of the nA 9 macroseismic fields compute N
(k)
j and N

(k)
j (I0), k = 1, 2, . . . , nA 9, as

defined above; if N
(k)
j (I0) 6= 0, then set p

(k)
j,0 ≈

(

N
(k)
j (I0)

N
(k)
j

)1/I0

,

(c) calculate Nj =
∑nA 9

k=1 N
(k)
j , if ∃k : N

(k)
j (I0) 6= 0 then set pj,0 ≈

∑nA 9
k=1 p

(k)
j,0 N

(k)
j /Nj ,

otherwise go to (a);

N.B. When N
(k)
j (I0) = 0, p

(k)
j,0 is not calculated. Moreover if ∀k, N

(k)
j (I0) = 0, pj,0 as well

cannot be evaluated; hence pj,0 is given only in those jth bins where ∃k : N
(k)
j (I0) 6= 0. The
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estimate of pj,0 given in (c) is the combination of the estimates (relative frequencies (b)) p
(k)
j,0

produced through independent information sources.

step 2. Assign p0 at any distance d:

(d) approximate the available pj,0’s by an inverse power function f(d) = (c1/d)c2 (smoothing

function), and estimate the coefficients c1, c2 by the method of least squares,

(e) set, for each bin j = 1, 2, . . . , L, pj,0 = f(rj −∆r/2) where rj is the radius of the jth bin

and ∆r is the bin width,

(f) pj,0 can be considered as the a priori mean of the variable pj , the variance σ2(pj) is

assigned as suggested in Rotondi and Zonno (2004, Section 2.1), for instance, equal to the

mean-square error of the approximating function f(d).

step 3. By inverting the mean and variance of the Beta distribution (3)

E0(pj) =
αj,0

αj,0 + βj,0
σ2(pj) =

αj,0βj,0

(αj,0 + βj,0)
2(αj,0 + βj,0 + 1)

(4)

obtain the prior hyperparameters αj,0, βj,0, j = 1, 2, . . . , L.

step 4. Update the hyperparameters αj,0, βj,0:

(g) by means of the nA9 macroseismic fields of the class CA with I0 = 9 or when a new

earthquake of I0 = 9 is recorded, update the estimate of pj’s through the posterior mean

p̂j =
αj,0 +

∑Nj

n=1 i
(n)
s

αj,0 + βj,0 + I0 ·Nj
, (5)

(h) smooth the estimates p̂j, j = 1, . . . , L with the method of least squares, by using an inverse

power function g(d) = (γ1/d)γ2 ,

(i) by again inverting (4), obtain αj and βj , hyperparameters of the Beta distribution of pj,

for each bin j = 1, 2, . . . , L.

N.B. the αj ’s and βj ’s really updated are only those associated with the bins where data points

were observed.

The results of this procedure for the three classes CA, CB, CC can be seen in Figure 8; the

top row shows the a priori value of the parameters pj,0 (blue dots) and the smoothing function

f(d) = (c1/d)c2 (see Section 2.2, step 2. (d)) (red dots). The bottom row shows the posterior

estimates of pj, j = 1, . . . , 250 (blue dots), the approximating curve g(d) = (γ1/d)γ2 (see Sec-

tion 2.2, step 4. (h)) (red dots), and the 90% confidence interval (green bars) of the binomial

distribution (2) for each pj. The red curves in Figure 8 do not represent the attenuation trend,

but the trend of the estimated parameter p̂ of the binomial distribution (2) of Is as the distance

from the epicenter varies.

Figure 8 about here
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2.3 Building future scenarios

After estimating the parameter the probabilistic model of Is is now completely defined, and we

can think of how to forecast future scenarios. So far we have discretized the space around the

epicenter by dividing it in bins where the distribution of Is depends on I0 and on the parameter

pj, characteristic of the bin, hence the model is given by:

Pr {Is | I0, pj} × Pr {pj | I0; αj , βj} .

To take into account the uncertainty on pj we average the model over this random variable

obtaining the predictive distribution:

Prpred {Is = i | I0} =

(

i0

i

)

Γ(αj + βj)

Γ(αj) Γ(βj)

Γ(αj + i) Γ(βj + i0 − i)

Γ(αj + βj + i0)
, (6)

where αj and βj are those obtained in Section 2.2, step 4. (i). If, on the contrary, we want to

have the distribution of Is at any site at distance d from the epicenter, we may substitute p in

the binomial distribution (2) by the value of the smoothing function g(d) given in Section 2.2,

step 4. (h). which approximates the posterior means of pj ’s. In the following we shall indicate

this binomial distribution as:

Prsmooth {Is = i | I0; g(d)} =

(

i0

i

)

g(d)i(1− g(d))i0−i i ∈ {0, 1, . . . , i0} . (7)

Figure 9 shows, for each attenuation class of earthquakes of I0 = 9, the predictive distribution

(left) and the smoothing binomial distribution (right) of Is in each bin. In particular, in the

jth bin we took as the epicenter-site distance d = rj −∆r/2, j = 1, 2, . . . , 160. The predictive

distributions are flatter than the binomials because of the averaging over the p’s parameters

performed to obtain (6).

Figure 9 about here

The mode of the above distributions, ipred or ismooth, can be used as the predicted value of

the intensity at sites located inside the respective bins if we are using the predictive distribution

(6), or at sites at distance d from the epicenter if we are using the binomial distribution (7)

with parameter g(d). Since Is = 0 does not make sense, we suggest assigning Pr(Is ≤ 1 | I0) to

Pr {Is = 1 | I0} in hazard assessment.

3 A case study: the Colfiorito earthquake

The data set in Table 1 covers the period 1570-1980. After this date the strongest earthquake

that occurred in Italy was the 1997 Colfiorito earthquake in the Umbria-Marche region. The

seismic sequence began on 26 September 1997 with two main shocks: the first event, ML =

5.6, occurred at 00:33 GMT, the second, ML = 5.8, several hours later, at 09:40 GMT. A third

quake, ML = 5.5, occurred on 14 October at 15:33 GMT (Amato et al., 1998). The epicenter
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was located at Colfiorito Lon. 12.879E, Lat. 43.020N (Gasperini et al., 1999), and the damage

ascertained in the days immediately following the main shock has been associated with the IX

degree of the MCS scale (ING et al., 1997). Figure 10 (middle) shows the 362 felt reports

recorded in a radius of 150 km from the epicenter, with intensities varying from the IX to the

IV degree. The position of the epicenter with respect to the other earthquakes in the data set

is indicated in Figure 6 by a black square. It is situated along the line which joins up two

earthquakes of class CA (yellow): the northernmost, the 1781/06/03 Cagliese earthquake of the

IX-X degree, and the southernmost, the 1703/01/14 Reatino Apennines earthquake of the XI de-

gree, but it is also near the 1741/04/24 Fabrianese earthquake of the IX degree listed in class CC .

Figure 10 about here

Let us consider each site of the Colfiorito macroseismic field where the intensity was assigned,

and compute the two distributions of the intensity at site: the predictive distribution (6) ac-

cording to the membership bin, and the binomial distribution (7) where d is the specific distance

from the epicenter. We repeat the same procedure for each of the three classes of attenuation

and estimate the intensity at sites through the mode of these distributions. Figure 11 represents

the expected intensities or, in other words, the expected scenarios given the epicentral inten-

sity IX, while the left and right pictures in Figure 10 show the discrepancy between observed

and expected intensities obtained through the predictive and binomial distribution, respectively.

The differences between the distributions of Is noted at the end of Section 2.3 are reflected in

Figure 11: in both families of distributions the attenuation globally decreases passing from the

class CA to the class CC but, on the one side, the binomial distributions are more peaked so

that higher intensities are estimated around the epicenter, while on the other side, the scenarios

obtained by the predictive distributions may vary locally among the classes due to the irregular

behavior of the estimated pj’s parameters (blue dots) in the bottom row of Figure 8. In fact

higher intensities are estimated around the epicenter in class CB while the trend again decreases

monotonically far from the epicenter, going from CA to CC .

Figure 11 about here

As result of the approach followed we have obtained not only estimates of the intensity at

site, but also entire probability distributions of Is (see Figure 9). We visualize this richness

of information by representing in Figure 12 the probability that the felt intensity exceeds the

VII degree of the MCS scale at the sites of the macroseismic field of the Colfiorito earthquake

according to the different probability distributions of Is proposed and the different attenuation

classes. In the same conditions Figure 13 shows the intensity that is not exceeded with at least

70% of probability.

Figures 12 and 13 about here

To discriminate among the various forecast scenarios we compare the predicted values with

11



those observed, applying the validation criteria proposed in Lindley (1987) and Winkler (1996).

We let Nj be the number of the felt reports in the jth bin, j = 1, 2, . . . , L, and N =
∑L

j=1 Nj be

their total number. The set of i
(n)
s intensity points per bin is indicated by Dj while D =

∑L
j=1Dj

denotes the total data set. We measure the degree to which each model predicts the data by

the logarithmic scoring rule, a probabilistic measure based on the logarithm of a posterior

probability, in our case the predictive (also called the marginal likelihood) and the binomial

distributions (Rotondi and Zonno, 2004). We obtain respectively the following expressions:

scorepred = −
1

N
log

L
∏

j=1

∏

n = 1, . . . , N

i
(n)
s ∈ Dj

(

I0

i
(n)
s

)

Γ(αj + βj)

Γ(αj) Γ(βj)

Γ(αj + i
(n)
s ) Γ(βj + I0 − i

(n)
s )

Γ(αj + βj + i0)
(8)

and

scorebin = −
1

N
log

N
∏

n=1

(

I0

i
(n)
s

)

g(dn)i
(n)
s (1− g(dn))(I0 − i

(n)
s ) (9)

dn being the distance of the n−th site from the epicenter. Another probabilistic measure of the

fit is given by the p(A)/p(B) ratio between the probability that the fitted model assigns to the

realization A and the probability of the predicted value B; it is a measure of how much is gained

from having predicted B when A occurs. The errors, expressed in probabilistic terms, are given

by the geometric means of the corresponding odds in logarithmic scale:

oddspred = −
1

N
log

N
∏

n=1

Prpred(i
(n)
s | Dj)

Prpred(i
(n)
pred | Dj)

(10)

oddsbin = −
1

N
log

N
∏

n=1

Prsmooth(i
(n)
s | D)

Prsmooth(i
(n)
smooth | D)

. (11)

where i
(n)
pred and i

(n)
smooth are respectively the mode of the predictive and of the smoothing binomial

distribution at the n−th site, estimator of the intensity at site (see Section 2.3).

Finally, we also apply a deterministic measure: the absolute discrepancy between observed

and estimated intensities at site. It is given for the predictive and binomial distribution respec-

tively by:

diffpred = 1/N

N
∑

n=1

∣

∣

∣
i(n)
s − i

(n)
pred

∣

∣

∣
and diffsmooth = 1/N

N
∑

n=1

∣

∣

∣
i(n)
s − i

(n)
smooth

∣

∣

∣
. (12)

The results are reported in Table 3; the values denoted by ∗ are the minima - the best values

- of the different criteria over the attenuation classes, while ∗∗ indicates the minimum of the

corresponding criterion when both the class and the distribution vary. For instance, according

to the scoring rule the best value is obtained by forecasting the scenario through the predictive

distribution of class CA, but the best score is provided by the same class using the binomial

distribution as well. Apart from the absolute discrepancy between the intensities observed and

those estimated by the binomial distribution, all the criteria support the conclusion that the
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Colfiorito earthquake should be included in class CA.

Table 3 about here

4 Comments

We have followed an itinerary which has led us from a sufficiently large data set of macroseismic

fields of the Italian territory to the forecasting of seismic scenarios in terms of macroseismic

intensity. The first leg was the identification, through a clustering technique, of three different

trends of attenuation, and hence the subdivision of the earthquakes into three classes. We have

then analyzed a probabilistic model for the intensity decay, and through a Bayesian methodology

estimated the probability distributions of the intensity at site Is (or equivalently the decay ∆I)

for bins, or at any distance from the epicenter. This methodology has been applied to forecast

the seismic scenario of the Colfiorito 1997 earthquake without knowing the attenuation class

to which it belongs. Comparison of the estimated intensities at site with those observed shows

that this earthquake should be included in class CA which, being characterized by the quickest

attenuation, can be related to events of little depth. As a matter of fact, according to Cattaneo

et al. (2000) the sequence of Colfiorito lasted until April 1998 and was characterized by shallow

earthquakes, less than 9 km deep. Our analysis agrees perfectly with this. This preliminary

result seems to support the idea that in Italy it would be better to regionalize the attenuation

probabilistic laws instead of considering a national one, and that data-driven techniques should

be used to divide the territory into isoattenuation zones rather than apply other criteria which

have not been proved to be strongly correlated with intensity attenuation.

Data and Resources

The maps were produced using the Generic Mapping Tools (GMT) package by Wessel and Smith

(www.soest.hawaii.edu/gmt, last accessed May 2009). The macroseismic fields of the DBMI04

Italian database were obtained from www.emidius.mi.ingv.it/DBMI04 (last accessed May 2009).
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date Lat Lon I0 Number of date Lat Lon I0 Number of

felt reports felt reports

1570/11/17 44.820 11.630 VII-VIII 49 1894/11/16 38.280 15.870 VIII-IX 297

1627/07/30 41.730 15.350 X 48 1898/06/27 42.415 12.905 VII-VIII 140

1638/03/27 39.030 16.280 XI 205 1904/02/24 42.100 13.320 VIII-IX 36

1693/01/11 37.130 15.020 XI 179 1907/10/23 38.130 16.020 VIII-IX 266

1695/02/25 45.800 11.950 IX-X 79 1909/08/25 43.150 11.403 VII-VIII 158

1703/01/14 42.680 13.120 XI 185 1911/02/19 44.120 12.080 VII 129

1731/03/20 41.270 15.750 IX 40 1911/10/15 37.700 15.150 X 43

1740/03/06 44.124 10.590 VII 31 1916/08/16 43.970 12.670 VIII 236

1741/04/24 43.425 13.004 IX 135 1919/06/29 43.950 11.480 IX 260

1743/02/20 39.850 18.780 IX-X 64 1920/09/07 44.180 10.280 IX-X 577

1781/04/04 44.235 11.797 IX 74 1922/12/29 41.724 13.670 VII 99

1781/06/03 43.594 12.506 IX-X 143 1927/12/26 41.700 12.700 VII 34

1783/03/28 38.780 16.470 X 323 1928/03/27 46.372 12.975 VIII-IX 289

1802/05/12 45.420 9.850 VIII 60 1929/04/20 44.470 11.130 VII 622

1805/07/26 41.500 14.470 X 207 1930/07/23 41.050 15.370 X 498

1808/04/02 44.830 7.250 VIII 92 1930/10/30 43.659 13.331 IX 220

1818/02/20 37.600 15.130 IX 121 1933/09/26 42.050 14.180 VIII-IX 322

1818/02/23 43.920 8.034 VII-VIII 43 1943/10/03 42.935 13.639 VIII-IX 86

1828/10/09 44.820 9.050 VII-VIII 86 1958/06/24 42.340 13.477 VII 14

1836/04/25 39.570 16.730 IX 42 1962/08/21 41.130 14.970 IX 207

1846/08/14 43.531 10.500 VIII-IX 83 1967/10/31 37.870 14.420 VIII 59

1857/12/16 40.350 15.850 X-XI 311 1968/01/15 37.770 12.980 X 161

1873/06/29 46.150 12.380 IX-X 187 1971/02/06 42.442 11.846 VII-VIII 64

1874/12/06 41.650 13.830 VII-VIII 43 1971/07/15 44.820 10.350 VII-VIII 221

1875/12/06 41.689 15.677 VII-VIII 95 1975/01/16 38.120 15.650 VII-VIII 305

1887/02/23 43.920 8.070 IX 1366 1978/04/15 38.150 14.983 IX 316

1891/06/07 45.570 11.170 VIII-IX 308 1980/11/23 40.850 15.280 X 1161

1894/08/08 37.650 15.120 IX-X 40

Table 1: Date, epicentral coordinates, epicentral intensity, number of felt reports of 55 strong

earthquakes drawn from DBMI04 (Stucchi et alii, 2007)
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1909/08/25 median mean 3rd quartile

∆I = 0 9.050 11.580 10.193

∆I = 1 20.300 31.690 26.014

∆I = 2 41.635 45.780 38.380

∆I = 3 52.890 68.140 55.799

∆I = 4 70.150 88.140 74.647

∆I = 5 98.305 124.760 125.291

Table 2: Synthesis of the information contained in the macroseismic field of the 1909/08/25

earthquake of VII-VIII intensity: median, mean and 3rd quartile of each set of epicenter-site

distances with the same ∆I.

predictive distrib. binomial distrib.

class scoring odds discrepancy scoring odds discrepancy

CA 1.452(∗∗) 0.177(∗∗) 0.667(∗) 1.513(∗) 0.295(∗) 0.634

CB 1.508 0.293 0.769 1.542 0.348 0.604(∗∗)

CC 1.613 0.408 0.838 1.728 0.583 0.722

Table 3: Criteria of forward validation applied to the Colfiorito 1997 earthquake; ∗ indicates the

best result.
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Figure 1: Spatial distribution of the epicenters of the 55 earthquakes constituting the data set.
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Figure 2: Intensity decay ∆I (red dots) versus epicentral distance for some of the 55 earthquakes

examined. Setting ∆I = 0, 1, 2, . . . , I0 − 1, the blue dot marks the median of the distances

subsets. The title of each picture provides the date and macroseismic intensity of the earthquake

concerned.
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Figure 3: Cluster tree obtained by S-Plus software (2007) with the Manhattan metric and

Ward’s method. Three clusters are well-separated: the quickest (yellow), medium (red), and

slowest (violet) attenuation trends. The 1875/12/06 and 1743/02/20 earthquakes have not been

classified.
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Figure 4: Silhouette plots generated by Cutree, a subroutine of the R free software (R, 2007)

applying: Manhattan metric, k = 5 groups and Ward’s method (top) and the complete-linkage

method (bottom).
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Figure 5: Intensity decay (red dots) versus epicentral distance for some of the 55 earthquakes

examined. Setting ∆I = 0, 1, 2, . . . , I0 − 1, the blue dot denotes the median of the distance

subsets. The title of each diagram provides date, macroseismic intensity, and attenuation class

of the earthquake concerned.
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Figure 6: Classification of the data set in three attenuation trends: very steep (yellow), less steep

(red), least steep (violet). The blank circle and square denote the unclassifiable earthquakes;

the black square indicates the epicenter of the Colfiorito 1997 earthquake.
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Figure 7: The 1980 Irpinia-Basilicata earthquake: relative frequencies of the intensity decay

recorded in distance bins 10 km wide.
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Figure 8: Prior and posterior pj parameter (blue dots) of the binomial distribution of IS condi-

tioned on I0 = 9 in the different classes CA, CB , CC , and at the jth bin, j = 1, . . . , 250. The red

dots indicate the smoothing inverse power functions, the green bars, the 90% confidence interval

for each pj .
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Figure 9: Predictive and binomial probability distributions in the jth bins, j = 1, 2, . . . , 160.
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Figure 10: Macroseismic field of 1997/10/07 Colfiorito earthquake (midddle) and difference

between the observed intensities and the best estimates (class A) produced by the predictive

(left) and binomial (right) distribution.
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Figure 11: Estimate of the intensity at sites given by the mode of the predictive and binomial

probability distributions.
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Figure 12: Forecast on Colfiorito macroseismic field: probability that the intensity at site exceeds

the VII degree of the MCS scale according to predictive and binomial probability distributions.
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Figure 13: Forecast on Colfiorito macroseismic field: intensity at site not exceeded with a

probability of at least 70% according to predictive and binomial probability distributions.
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