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Abstract: We present a method that allows us to incorporate additional information from

the historical earthquake felt reports in the probability estimation of local intensity attenua-

tion. The approach is based on two ideas: a) standard intensity versus epicentral distance

relationships constitute an unnecessary filter between observations and estimates; and b) the

intensity decay process is affected by many, scarcely known elements; hence intensity decay

should be treated as a random variable as is the macroseismic intensity. The observations

related to earthquakes with their epicenter outside the area concerned, but belonging to ho-

mogeneous zones, are used as prior knowledge of the phenomenon, while the data points of

events inside the area are used to update the estimates through the posterior means of the

quantities involved.

1 Introduction

Where long historical catalogues are available, as in Italy, it is quite natural to take

the macroseismic intensity as a measure of the size of earthquakes. This ordinal quantity,

often measured on the 12 degrees of the MCS scale, is in practice treated, as best one

can, as an integer variable on {1, 12}. In order to assess the seismic hazard in terms of

intensity we have to address the problem of its attenuation. Many studies on this topic

have appeared in the literature; in the large majority of these the key role is played by the

deterministic function which expresses the link between the ∆I intensity decay and factors

such as epicentral intensity, site-epicenter distance, depth, site types, and styles of faulting.

In some cases a normally distributed random error is added to take into account the scatter

of the observations around the Is site intensity value predicted through the attenuation

relationship. More emphasis is given to the uncertainty when the decay is considered an

aleatory variable: for the intensity decay normalized on I0, a Beta distribution with mean

proportional to an attenuation law and varying deviation was first proposed by Zonno et al.

(1995), while a logistic model was used by Magri et al. (Pageoph., 43, 1994) to estimate the

probability that the attenuation exceeds a threshold value.

We present a complete probabilistic analysis of the attenuation issue, avoiding the use of

any deterministic attenuation relationship (Rotondi and Zonno, 2004). On the contrary, the

emphasis here is on exploiting information from seismogenically homogeneous zones, that

is, on assigning and updating prior parameters in the Bayesian framework. We give the

predictive distribution of the intensity at site, conditioned on I0 and on the d distance from

the epicenter, with both discrete and continuous d. We present some validation criteria for

these two classes of distributions, and then apply these criteria first to an historical event, the

Camerino 1799 earthquake, to explore the goodness of fit of the model, and then to a recent

event, the Colfiorito 1997 earthquake, to validate the procedure. We compare our approach
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with that of Magri et al. (1994), estimating the decay through the mode of the respective

probability distributions.

2 Description of the model

Let us assume that the variable ∆I is discrete and belongs to the domain {0, I0}; it is

reasonable to choose for Is = I0−∆I, at a fixed distance, the binomial distribution Bin(I0, p)

conditioned on I0 and p:

Pr {Is = i | I0 = i0, p} = Pr {∆I = I0 − i | I0 = i0, p} =

(

i0
i

)

pi(1 − p)i0−i

where p ∈ [0, 1]. To account for the variability of the ground shaking even among sites located

at the same distance, the parameter p has been considered a Beta distributed random variable

in the Bayesian paradigm

Be(p;α, β) =
Γ(α + β)

Γ(α)Γ(β)

∫ p

0
xα−1(1 − x)β−1dx .

2.1 Assigning prior parameters and their updating

The procedure described here draw initial knowledge of the phenomenon from the intensity

data points of earthquakes occurring in zones that are homogeneous to the area under study,

from the viewpoint of seismotectonics and seismic-wave propagation.

Let us draw L distance bins {R1, R2, . . . , RL} of width ∆r around the epicenter of any

earthquake of I0 intensity in those zones. Taking a sufficiently small step we may assume

that the decay process behaves in the same way within each Rj band; moreover, we denote

by Dj,0 =
{

i
(n)
s

}Nj,0

n=1
the set of Nj,0 felt intensities in the j-th band. As the probability of

null decay (Is = I0) is pi0
j , we assign the initial mean value of pj using simply the frequency

of null decay, Nj,0(∆ I = 0)/Nj,0, and deduce from this value the hyperparameters αj,0 and

βj,0. Where there is no report of null decay, we have smoothed the valuable pj ’s through the

function f(d) = (c1/d)c2 and estimated the coefficients c1, c2 by the method of least squares.

Now let us consider all the earthquakes of I0 intensity with epicenter within the area

under study; D =
⋃L

j=1 Dj =
⋃L

j=1

{

i
(n)
s

}Nj

n=1
denotes the set of their intensity data points,

subdivided into L subsets. On the basis of this new information we update our knowledge

on the attenuation process. We use Bayes’ theorem to compute the posterior distribution

Be(pj | Dj), and estimate pj through its posterior mean p̂j =
αj

αj+βj
where

αj = αj,0 +

Nj
∑

n=1

i(n)
s βj = βj,0 +

Nj
∑

n=1

(

i0 − i(n)
s

)

.

In order to let the p parameter of the binomial distribution for the intensity Is at site vary

with continuity, we smooth the estimates p̂j, j = 1, . . . , L with the method of least squares,

again using an inverse power function g(d) = (γ1/d)γ2 . In this way it is possible to assign the

probability of the intensity decay Pr {∆I | I0, g(d)} at any distance from the epicenter.



3 Validation

To predict the intensity points an earthquake will generate, on the basis of the knowledge

accumulated before its occurrence, we can apply either a predictive probability function for

all the points within every Rj band

Pr {Is = i | I0 = i0,Dj} =

(

i0
i

)

Γ(αj + βj)

Γ(αj) Γ(βj)

Γ(αj + i) Γ(βj + i0 − i)

Γ(αj + βj + i0)

or use a different binomial Bin(I0, g(d)) probability function for the points at distance d from

the epicenter, where g(·) denotes the smoothing inverse power function.

We propose here some measures of the degree to which a model predicts the data; for the

lack of space we refer just to the predictive distribution.

• Logarithmic scoring rule based on the logarithm of a posterior probability (Lindley

(Stat. Science, 2, 1987); Winkler (Test, 5, 1996)). We use the marginal likelihood to evaluate

this measure, obtaining the following expression:

−
1

N ′

s

log

L
∏

j=1

∏

n′ = 1, . . . , N ′

s

i
(n′)
s ∈ D′

j

(

i0

i
(n′)
s

)

Γ(αj + βj)

Γ(αj) Γ(βj)

Γ(αj + i
(n′)
s ) Γ(βj + i0 − i

(n′)
s )

Γ(αj + βj + i0)

where N ′

s is the number of sites, within the L bands Rj , at which the future event will be

felt.

• p(A)/p(B) ratio between the probability that the fitted model assesses to the realization

A and the probability of the predicted value B.

The idea behind this measure is borrowed from the concept of deviance (Read and Cressie,

1988) and is based on a consideration of how much is gained from having predicted B when

A occurs. If we indicate the mode of a posterior probability as the predicted value

i
(n′)
pred = arg maxis=0,...,i0

Prpred( is | ·) ,

the error, expressed in probabilistic terms, is given by the geometric mean of the correspond-

ing odds in logarithmic scale:

oddspred = −
1

N ′

s

log

N ′

s
∏

n′=1

Prpred(i
(n′)
s | Dj)

Prpred(i
(n′)
pred | Dj)

.

• Deterministic absolute discrepancy between observed and estimated intensities at site

diffpred = 1/N ′

s

N ′

s
∑

n′=1

∣

∣

∣
i(n

′)
s − i

(n′)
pred

∣

∣

∣
.

4 Some results

Let us consider the ZS4 zonation of central Italy represented in Figure 1. We have studied

two earthquakes of IX intensity occurred in zone 47: the Camerino earthquake of 28 July

1799 and the Colfiorito earthquake of 26 September 1997. We have assumed that the shaded



Figure 1: The ZS4 zonation of central

Italy (courtesy of the Italian Group for

Defence against Earthquakes).

year Pr {Is | ·}

validation criterion pred. binom. logist.

1799 scoring ∗1.205 1.405 1.395

B odds ∗0.218 0.648 0.541

discrepancy ∗0.543 0.696 0.696

1997 scoring 1.575 1.789 ∗1.337

F odds ∗0.301 0.650 0.308

discrepancy 0.941 ∗0.838 0.847

1997 scoring 1.402 1.610 ∗1.171

B odds ∗0.118 0.432 0.259

discrepancy ∗0.441 0.670 0.667
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Figure 2: Estimate of the predictive

probability function for the intensity

Is.
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Figure 3: Estimate of the probability

function for the intensity Is drawn from

the logistic model.

zones, homogeneous from the viewpoint of kinematic context and expected rupture mech-

anism according to the zonation, are also homogeneous from the seismic-wave propagation

point of view. Figure 2 shows the estimated predictive probability function for IS , while

Figure 3 depicts the probability function produced by the logistic model. The estimation

does not include the 1997 earthquake. The Table summarizes the results of the validation

performed backward for the 1799 earthquake, and first forward and then backward for the

Colfiorito quake respectively. The predictive distribution can be indicated as the all-around

best of the probabilistic models examined.
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