
 1

Stochastic finite-fault ground-motion simulation in a wavefield diffusive regime:  

case study of the Mt. Vesuvius volcanic area. 

 
D. Galluzzo(1), G. Zonno(2), E. Del Pezzo(1) 

 

(1)Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Napoli “Osservatorio Vesuviano”, Italy 
(2)Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Milano-Pavia, Italy 

 
Abstract 
 

The main aim of the present work consists in the validation of stochastic method for simulating 

weak ground motion in a diffusive regime due to low-to-moderate magnitude earthquakes, and in 

particular in its application to a volcanic area. We simulated the peak ground acceleration and the 

response acceleration spectra caused by two earthquakes scenarios (MD = 4.3 and MD = 5.4) at Mt. 

Vesuvius volcanic area by using the stochastic finite-fault simulation method. We validated the 

stochastic methodology by combining source, path and site parameters of the investigated area 

considering the time duration parameter, Trms, calculated on the study seismograms. The values of 

time durations are confirmed by calculating the same parameter, Trms, on the seismogram energy 

envelope described by multiple scattering models, in terms of scattering and the intrinsic dissipation 

coefficient.  Initially, the simulations were evaluated for 10 local earthquakes (1.7 ≤ MD ≤ 3.6) that 

occurred at Mt Vesuvius in 1999 and are then compared with the observed data. The comparison 

between simulated and observed seismograms has been used to calibrate the stochastic procedure, 

and has been considered as the starting point for simulating ground motion for the scenario 

earthquake (MD > 3.6) that could occur in the study area. The scenario earthquake and the relative 

fault features were chosen on the base of statistical, tectonic, structural and historical studies of the 

study area. We simulated ground motions for a maximum magnitude value, Mmax, of 4.3, 

determined from examination of the Gutenberg-Richter law for the study area, and also for an Mmax 

= 5.4, a magnitude that is associated with the earthquakes that struck the ancient town of Pompei 17 

years before the eruption of Mt Vesuvius that occurred in 79 AD. The largest values of Amax for  the 

MD  = 4.3 seismic event are in the range of 0.140 g to 0.029 g. In the case of MD = 5.4, we obtain 

PGA values in the range between 0.17 and 0.55 g. 
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1. Introduction  

 

 Mt Vesuvius is potentially one of the most dangerous volcanoes in the World. The Civil 

Protection Agency in Italy has developed evacuation plans in case of reactivation of its volcanic 

activity. In the last revision of these plans, attention was also paid to possible local volcano-tectonic 

earthquakes of moderate magnitude that might accompany any future eruption and could produce 

local damage to infrastructures, including the evacuation routes. The Italian Civil Protection 

Agency has therefore requested estimations of the maximum acceleration (Amax) that would be 

produced by the local seismic input to be expected in the area. This value of Amax may well be 

different from that indicated by the seismic hazard map that has already been prepared for the whole 

of the Italian territory, as that map (http://esse1-gis.mi.ingv.it) was prepared using the available 

catalogue of the seismicity in Italy as input, in which no earthquakes of significant magnitude are 

reported to be associated with eruptions of Mt Vesuvius. 

To fulfill this request, we have calculated the maximum acceleration, Amax, and the response 

acceleration spectra with 5% damping, hereafter called simply “response spectra”, in the territory 

around Mt Vesuvius. We used the stochastic method [hereafter indicated as SM] based on the 

approximation of finite rectangular fault (Beresnev and Atkinson, 1997). This technique has been 

used for the estimation of the peak parameters of ground motion in many regions of the World 

(Akinci et al., 2001; Atkinson et al., 2002; Berardi et al., 2000; Carvalho et al., 2001, 2007; Castro 

et al., 2001) and it is particularly useful for the simulation of ground motion in the frequency range 

usually investigated in earthquake engineering [1 – 10 Hz]. In this approach, the high frequency 

part of the seismic signal can be treated as a random function. For the application of the SM, the 

ground motion duration in the area needs to be known, as a function of distance and magnitude. 

Here, we calculate the empirical relationship between duration and distance from experimental data; 

in addition, we validate this empirical relationship through theoretical considerations based on the 

theoretical energy envelope calculated in a diffusive regime. The approach is similar to that 

followed by Pousse et al. (2006) who applied the stochastic approach by Sabetta and Pugliese 

(1996) to the K-net Japanese Database improving the method by considering the time envelope of 

the accelerogram based on empirical models. 

Our procedure essentially consists of two steps. The first is related to the calibration of area-

specific parameters and to the validation of the method by comparing the observed seismograms 

and response spectra with those obtained through simulation. The second step consists of simulating 

the maximum acceleration and response spectra for the expected local, maximum-magnitude 

earthquake. 

In the next sections we will first give an introduction to the tectonic setting of the Mt 

Vesuvius area. We will describe the dataset used for calibrating the SM and we will discuss how the 
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expected magnitude has been evaluated. In the subsequent paragraphs, the keypoints of the 

stochastic technique will be shown and the details of calibration procedure used in this work will be 

described together with the model parameters used for the area under investigation. A detailed and 

quantitative description of the results (maximum acceleration, Amax , and response spectra) and the 

relative discussion will conclude the work.   

 

2. The Mt Vesuvius volcanic area: tectonic setting and background seismicity 

 

 Somma Vesuvius is a composite central volcano located in the Campania Plain near the 

suburbs of the city of Naples. It is formed by an ancient caldera (Mt Somma) and a younger cone 

(Mt Vesuvius). The Somma structure is composed of lava flows and minor scoria-fall deposits. The 

structure of the Somma-Vesuvius volcanic complex has been studied by the integration of 

mesostructural measurements, focal mechanisms and shear-wave splitting analyses (Bianco et al., 

1998). Fault-slip and focal mechanism analyses indicate that the volcano is affected by NW-SE, 

NE-SW oriented oblique normal slip faults and by E-W oriented normal faults. The NW-SE 

oriented oblique slip-fault system represents the main discontinuity on which the volcano lies 

(Bianco et al., 1998). 

The past eruptive activities of Mt Vesuvius have caused great damage to the surrounding 

towns. The last eruption occurred in 1944. At present, the seismic activity  of Mt Vesuvius is 

characterized (Del Pezzo et al., 2004) by a low level of seismicity (a few hundred micro 

earthquakes per year) and by poor fumarolic activity located inside the caldera rim. The last seismic 

swarm occurred in 1999 with a maximum duration magnitude, MD , of 3.6, the greatest MD 

observed since the last eruption in 1944. 
 

3. Data Set 

 

 The data set is composed of 10 low-to-moderate magnitude earthquakes (1.7 ≤ MD ≤ 3.6) 

located at depths between 1.4 km and 4.0 km b.s.l (Table 2). The selection of these events was 

made according to two requirements: earthquakes with: 1) well-known focal mechanisms and 

records with good signal-to-noise ratios; and 2) the largest duration magnitudes and hypocentral 

distance range. The second of these arises from the need to validate the stochastic procedure on the 

largest range of distance and duration magnitudes available. The epicenter distribution of this data 

set is shown in Figure 1. We have used waveforms recorded at the BKE, FTC and SGV digital 

stations, to compare the synthetic with the observed seismograms. The waveform recorded at these 

stations are representative of the whole available data set in terms of propagation media 

(hypocentral distance range and attenuation properties) and local site condition. The source-site 
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distance ranges from 2 to 6 km and the site conditions are representative of the local geological 

characteristic for the summit part of the volcanic complex for SGV ad BKE and of its base for FTC 

site. Taking into account these features, we checked the stochastic procedure on the waveforms 

recorded at these three sites and considered the result as a significant indication for the extension of 

the method to all the other stations.  

BKE, SGV and FTC stations were equipped with digital station gain-ranging PCM 5800 Lennartz 

(12 bit) with MARK L4C 3-component sensors (proper frequency = 1 Hz; damping = 0.7; 

sensitivity G = 169 V/m/s). The digital stations sampled seismic signals at 125 Hz, with a low-pass, 

anti-alias filter at a cut-off frequency of 25 Hz. All of the velocity seismograms available were 

corrected for instrument response and differentiated in the time domain to obtain the equivalent 

acceleration signals. 

The locations, magnitude and focal solutions for the 10 events used in this study were taken 

from the literature (Del Pezzo et al., 2004), as indicated in Table 2 and will be described in sub-

section 5.3.  

 

4. Application of the method to the Mt Vesuvius area:  the expected maximum magnitude 

event  

 

 Following a preliminary study based on a point source stochastic simulation of the ground 

motion at Mt Vesuvius (Galluzzo et al., 2004), we improved the estimation of the maximum 

acceleration and response spectra generated by local volcano-tectonic earthquakes using finite-fault 

stochastic simulation. In this approach we simultaneously take into account finite source, 

propagation parameters and local site effects of the study area. One of the most important aspects in 

the evaluation of Amax is the evaluation of the largest seismic event and the corresponding 

maximum magnitude, Mmax.  

The maximum magnitude of an earthquake in a given region is a crucial parameter in the 

evaluation of seismic hazard. It can be estimated (1) from a consideration of the maximum fault 

area that can rupture in a single event; (2) by the magnitude truncation in the seismicity seen for 

source zone in which the return period for the maximum magnitude is shorter than the observation 

period (Basham et al., 1982); or (3) by a statistical study of the seismic catalogue (Kagan, 1997). 

In the present work, we choose two different values of Mmax based on the instrumental 

seismicity and on the historical data respectively. The values of Mmax evaluated on the base of 

historical seismicity (Mmax = 4.1 ± 0.2) were estimated in terms of MD for a return period of 30 

years, using the Gutenberg-Richter frequency-magnitude relationship (hereafter indicated as G&R) 

as discussed in Galluzzo et al. (2004). Taking this into account, we assume an Mmax equal to 4.3. 

This is close to some of the Mmax values seen during pre-eruptive phases of some volcanoes around 
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the world (Benoit and McNutt, 1996) and corresponds to the values reported by Festa et al. (2003) 

and Cubellis et al. (2007) based on instrumental seismicity data for Mt Vesuvius. Furthermore, on 

the base of historical data, Cubellis et al. (2007) indicated two energy levels associated with the 

Mmax: a lower level associated with an Mmax = 4.5 (related to the activation of the whole 

seismogenetic structure detected over the past 40 years of seismicity) and an upper level associated 

with an Mmax = 5.4 (on the basis of historical considerations relating to the earthquake that occurred 

in 62 AD, before the big Pompei eruption). As already discussed, we assumed that the Mmax = 4.3 

event is associated with a return period equal to 30 years; it is difficult to estimate a return period 

for Mmax = 5.4, due to the limitation of the seismic catalogue. However, historical studies (Cubellis 

et al., 2007) have shown that earthquakes with a magnitude larger than 4.3 occurred more than 2000 

years ago. Thus, we arbitrarily assumed a return period of 2000 years for Mmax = 5.4. 

The dimensions of the faults that could generate seismic events with respectively MD = 4.3 

and 5.4 were calculated using the Wells and Coppersmith (1994) relationship, which links the 

dimension of the fault to the magnitude of the target event in the assumption MD = MW (Montaldo 

et al., 2005). On the basis of these relationships, we set an MD= 4.3 fault plane area of 4.0 km2 and 

an MD= 5.4 fault plane area of 32.0 km2. The orientation and geometric features of the fault that 

could reasonably be activated in the case of an eruption were deduced through a detailed structural 

and geophysical study of the Somma-Vesuvius volcanic complex, based on mesostructural 

measurements, focal mechanisms and shear-wave splitting analyses. At regional scale, the Somma-

Vesvius Mesozoic basement is affected by SW-dipping faults and Northeast-Southwest-trending 

faults. Other minor structures (aligned scoria cones, fractures and minor faults) are also present on 

the surface and affect the north-eastern and north-western sector of the Somma edifice, where the 

fractures trend in NW-SE and NE-SW direction (Bianco et al., 1998). Shear-wave splitting analysis 

reveals an anisotropic volume due to stress induced cracks NW-SE aligned by faulting process and 

the authors identified NW-SE trending oblique-slip fault system as the main discontinuity on which 

the volcano lies. Unfortunately, in literature there are no estimates of the real dimensions of these 

fault structures; consequently the determination of Mmax  using the empirical relation between fault 

size and magnitude is impossible. Thus, we have taken from the study of Bianco et al. (1998) the 

information about fault strike and dip, and estimated the fault size by the presumed Mmax . 

On the basis of these results, we selected a fault structure that intersects the crater, with a 

strike angle of 135° (NW-SE orientation) and a dip angle of 60° and assumed that this earthquake 

share the same hypocenter of the MD = 3.6 earthquake occurred in 1999 and is located in the middle 

of the fault plane (Lat. 40° 49’ 52’’ N, Long. 14° 25’ 52’’ E; depth 4.0 km b.s.l). In addition, fault 

geometry and size were evaluated for an MD = 5.4 earthquake. We assumed that the fault surface (8 

x 4 km2) intersects the crater along a NW-SE orientation (strike = 135°; dip = 60°) and that its 

nucleation point coincides with that of the MD = 4.3 event and is located in the middle of the fault 
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plane. The geometrical features and the location of the nucleation point related to the two 

earthquake scenario are shown in table 1. 

We note here that alternative scenarios not considered by the present study may include 

other possible fault systems related to the renewal of volcanic activity. 

 

5 Procedure of the analysis 

 

 Ground motion shaking and response acceleration spectra in the volcanic area of Mt 

Vesuvius were calculated using the stochastic finite fault approach and implemented in the FINSIM 

code (Beresnev and Atkinson, 1998a). The first step is the calibration of the method. This target 

was reached through the following analysis procedure: 

• selection of digital records of 10 local earthquakes related to those that occurred during the 

seismic crisis in 1999, where the strongest had a magnitude MD = 3.6;  

• processing of velocity records to obtain accelerograms and response spectra (5% damping) 

using the appropriate instrumental corrections; 

• estimation of the size of the fault starting from the relationships developed by Wells and 

Coppersmith (1994) assuming MW equal to MD; 

• estimation of time durations (Trms) from records following the procedure described by 

Gusev (1983). There is a discussion on how all of these parameters were obtained in 

section 5.2; 

• application of the stochastic finite fault simulation technique to calibrate the parameters of 

the model using the “trial and error” approach by fitting the recorded with simulated site 

corrected response spectra and the observed waveforms with the site corrected synthetic 

waveforms; a trial and error procedure is used to infer the stress drop value, Δσ, and the 

sub-fault size, dl. We provide frequency dependent site effects estimated for the target 

sites, as well as an average Q value for the region. 

 

The previous procedure was used to calibrate the SM discussed in the following section 5.1. 

Finally, the evaluation of response acceleration spectra (PSA) in the frequency range [1-30 Hz] and 

PGA for the possible largest events of MD = 4.3 and MD = 5.4 was made by using the previously 

validated stochastic finite-fault method. 

   

5.1 Finite-fault ground simulation 

 

 We used the procedure described by Beresnev and Atkinson [1997, 1998b] that generalizes 

the stochastic simulation technique proposed for point sources by Boore [1983, 2003] to the case of 
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finite faults. The fault plane was assumed to be rectangular, and was subdivided into an appropriate 

number of sub-faults, which were modeled as point sources characterized by an ω2 spectrum.  

The rupture front that spreads radially from the nucleation point triggers the sub-faults when 

it reaches their center; the sub-fault acceleration time histories are propagated to the observation 

point by considering specified distance-duration curves and attenuation model. The sub-fault 

moment and corner frequency are derived from the size of each cell, and the number of sub-faults 

triggered is adjusted to reach the specified target moment. A random component is included in the 

sub-source trigger times to account for the complexity in the ground motion generation process. The 

corner frequency of the ω2 spectrum is related to the sub-fault size Δl, to z, a parameter related to 

the sub-fault radiation amplitude, and to y, the fraction of rupture propagation velocity to shear 

wave velocity, β. The amplitude of sub-fault radiation is proportional to the quantity z2, with z=1.68 

for “standard” ruptures (Beresnev and Atkinson, 1997). The method has been applied to events with 

moment magnitude Mw, lower than 4.0 (Motazedian and Atkinson, 2005a) and in principle can be 

used in any tectonic environment, due to the flexibility in the specification of the input parameters, 

which include models of distance-dependent sub-source duration, geometric spreading and intrinsic 

Q(f) attenuation. Slip distribution on the fault plane and two separate amplifications can also be 

specified, in order to account for crustal amplification and local site effects. 

 The limitations of the stochastic method used in this work are mainly related to the 

assumption of a constant radiation pattern and to its inadequacy to simulate low frequency 

directivity effect. Recently, Castro et al. (2006) have simulated strong motion seismograms by 

using frequency-dependent radiation pattern coefficient for Umbria-Marche (Central Italy) 

earthquake of Mw= 6.0 and have compared the results with those obtained by technique of Beresnev 

and Atkinson (1997,1998b) used in the present work. They found a reduction of the fitting errors on 

acceleration spectra of about 9% and estimated that site and directivity effects are more relevant 

respect to those associated with radiation pattern. Another limitation of FINSIM is to not take into 

account the low frequency directivity effect; recently, Motazedian and Atkinson (2005b) improved 

the method by considering a dynamic corner frequency to simulate directivity effect and a reduction 

of errors equal to 24% on observed spectra was found (Castro et al., 2007) using this improvement. 

Other hybrid method for taking into account these features were proposed by Pulido and Kubo 

(2004) who combined a deterministic simulation of wave propagation for low frequencies and a 

semi-stochastic modeling approach for high frequencies.  

 In the present work we considered that the influence of radiation pattern and directivity 

could be not critical for the FINSIM simulations of low magnitude accelerograms, where the high 

frequency content play a predominant role in the observed spectra. This last statement can be 

questionable for the MD=5.4 earthquake scenario, where the dimension of the fault are larger than 

the hypocentral distance. However, also in this last case, the uncertainties on ground motion 
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parameters due to the errors on model parameters are less than 35% (Sorensen et al., 2007). 

Moreover, they are comparable with the uncertainty associated with the assumption of absence of 

directivity effects. 

 

5.2 Model Parameters 

 

 The modeling parameters used for the simulations in this work are shown in Table 3. The 

seismic moment M0 was evaluated by applying the relation between duration magnitude MD and 

seismic moment M0 calculated by Del Pezzo et al. (2004) for Mt Vesuvius: 

 

DMM ⋅+= 8.08.9log 0          (1) 

 

where seismic moment M0 is expressed in N⋅m. The fault plane dimensions and orientation were 

evaluated, respectively, by the relationship of Wells and Coppersmith (1994) and by the focal 

mechanisms reported by Del Pezzo et al. (2004). The hypocenters were assumed to be located at the 

centers of the faults and a random distribution of slip on the fault plane was assumed. Indicative 

stress drop values were taken from the work of Galluzzo et al. (2006) and the final values were 

obtained with the trial and error procedure defined before, changing the value of stress drop. The 

average value of shear wave velocity was calculated from the high resolution tomography carried 

out by Scarpa et al. (2002). Average density value was deduced from the work of Zollo et al. 

(2002). Attenuation parameters were taken from Del Pezzo et al. (2006a, 2006b). We assumed 

parameter Q constant with frequency and took into account the average value of Q evaluated on the 

high resolution 3D model of S-wave attenuation for the volcanic structure by Del Pezzo et al. 

(2006a, 2006b).  The high frequency content of the simulated ground motion was also controlled by 

the cut-off frequency fmax, beyond which the acceleration spectrum decay sharply with increasing 

frequency (Pulido and Kubo, 2004). In the present paper we do not observe any change in the 

spectral decay beyond the corner frequency till to the cut-off frequency (25 Hz) of the anti-alias 

filter. Consequently, we can reasonably assume that fmax ≥ 25 Hz. For practical reasons, we set fmax 

= 20 Hz. Site effect transfer functions for each of the investigated sites were obtained by Galluzzo 

et al. (2006), where the site effect were evaluated from local low-to-moderate earthquakes (1.7 ≤ 

MD ≤ 3.6) by applying direct spectral ratios, generalized inversion method on S-wave and 

generalized inversion method on coda waves (Fig. 2). The authors found a good agreement between 

the results obtained with different techniques, and observed the highest amplification level above 8 

Hz for the station located on the summit part and below 8 Hz for the station located in the lower 

part of the volcanic complex.  

 The other crucial aspect for an optimal application of the procedure is the precise knowledge 



 9

of the relationship between duration and source-site distance. In facts, the strong motion duration 

parameter can have a strong influence on earthquake damage. A motion with moderate amplitude 

but long duration may produce enough load reversals for damaging responses to build up in a 

structure (Kramer, 1996). Generally this task is passed over using empirical relationships typical of 

the area under study (Beresnev and Atkinson, 1997). Less crucial, but anyway important, is how the 

duration is defined and hence measured. Bolt (1973) evaluated the strong motion duration by 

considering the “bracketed duration”, in which the amplitude of acceleration was greater than 0.05 

g. The Trifunac and Brady (1975) approach consists of integrating the squared amplitude of the 

record and taking the time interval between 5% and 95% of total cumulative energy. Gusev (1983) 

proposed the use of the rms duration, Trms, defined by considering the power moments of the 

squared amplitude of the signal. This definition of time duration was applied by Petukhin and 

Gusev (2003) for small local earthquakes occurred in Kamchatka region. Kawashima et al. (1985) 

considered as time duration the temporal segment in which the amplitudes exceed some fraction of 

the peak value.  

 In this study we applied the procedure following Gusev (1983) by evaluating Trms on 54 

waveforms from 28 local earthquakes (1.7 ≤ MD ≤ 3.6) occurred in 1999 and recorded at the sites of 

interest. Interestingly, we noticed  a coincidence (within an uncertainty of 1s) of the empirically 

calculated durations at different distances, with those theoretically evaluated applying the definition 

of Gusev (1983) to the theoretical envelope of the seismograms; the theoretical envelope was 

calculated on the basis of the diffusion model (Sato and Fehler, 1997) (Fig. 3). This model describes 

the energy envelope of the entire seismogram as a function of the lapse time and of the parameters 

characteristic of the medium (the diffusivity and the intrinsic attenuation coefficient). The 

comparison provides the engineering seismology community with an improvement of the ordinary 

stochastic method, adding the information obtained from coda wave studies. For this purpose, we 

used the experimental results obtained by Del Pezzo et al. (2006a), who measured diffusivity and 

intrinsic attenuation for the area of Mt Vesuvius. The details of this application are described in the 

Appendix. Furthermore, the empirical relationship between ground motion duration and 

hypocentral distance is plotted in Figure 4. Assuming a linear relationship between Trms and 

distance, we applied a least square fitting procedure to obtain the following relationship:  

 

5.19.0 +⋅= RTrms  (2) 

 

where R is the hypocentral distance in kilometers, and Trms is the time duration in seconds. The 

uncertainties associated with the parameters in equation (2) (20% of calculated values) give an error 

of 0.4 s on the estimation of Trms.  
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6. Results of the simulation 

 

 The SM is calibrated by the experimental parameters obtained using the digital records. We 

used 10, 3 and 2 recorded waveforms, recorded respectively at BKE, SGV and FTC. Examples of 

the stochastic simulations compared with the observed waveforms at the BKE and SGV stations are 

shown in Figures 5-8. The fit was obtained using the “trial and error” procedure described in sub-

section 3.2. The simulated response spectra (at 5% damping) shown in the grey filled curves were 

obtained by calculating the average response spectra over 30 stochastic simulations. These values 

were evaluated by considering the average values from 30 simulations.   

The results obtained comparing the simulated and recorded waveforms at station BKE are 

summarized in Table 4, with good agreement seen between the durations of the simulated and 

observed waveforms and between the maximum accelerations: the differences between observed 

maximum accelerations (column V) and the simulated ones (column VI) lay within one standard 

deviation. In addition, the stress-drop values for which the best fit was reached (column IV of Table 

4) are similar to those evaluated experimentally (Galluzzo et al., 2006): local earthquakes with an 

MD in the range of 1.7 to 3.3 are characterized by stress-drop values that are equal or less than 10 

bar; and the 3.6 MD event shows a stress-drop value close to 50 bar. The high value of the stress 

drop found for the highest magnitude earthquake can be explained by the greater tectonic stress that 

is released in the pre-fractured carbonate basement with respect to that characteristic of the 

shallower and more unconsolidated materials, that make up the volcanic edifice (Del Pezzo et al., 

2004). An important issue for the application of SM consisted in the choice of the subfault size Δl. 

Δl is related a) to the total number of subfaults, b) to the amplitude of summed radiation from each 

subfault and c) to the corner frequency of subfault spectrum (Beresnev and Atkinson, 1998a). The 

most remarkable effect of changing Δl value is the increasing of the response spectra frequency 

content for decreasing subfault dimension Δl. By applying “trial and error” procedure, subfault 

dimension Δl for the selected seismic events were let to vary in the range [100 - 200 m]. 

The selection of the earthquake that would produce the strongest ground shaking in the 

surrounding area, which is defined as the “controlling” earthquake (Kramer, 1996), was made by 

considering the Gutenberg-Richter relationship of the study area, the main active fault structure, and 

the empirical relationships which link the dimensions of the fault to the magnitude of the 

earthquakes, as described in detail in the section 4. Using a stress-drop value of 70 bar, the results in 

terms of the PGA, time histories and response spectra for the selected largest seismic event MD = 

4.3 are shown in Figures 9 and 10. A sensitivity analysis was carried out using different values of 

stress drop, those of 60, 70 and 80 bar, and the results of the simulations are summarized in Table 5 

for all the study sites. The maximum values of Amax, obtained for a stress-drop value equal to 60, 70 

and 80 bar, are in the ranges of, respectively [0.100-0.029] g, [0.120-0.033] g and [0.140-0.038] g. 
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The SM was also applied to the simulation of the ground motion for an MD = 5.4 seismic 

event. Time histories and response spectra are shown in fig.11 and fig. 12 respectively. In this case 

we set the stress drop value equal to 70 bar.  The maximum acceleration values obtained are in the 

range between 0.55 and 0.29 g for the high altitude sites (SGV, BAF, BKE, BKN, BKS, FTC) and 

between 0.32 and 0.17 g for the lower altitude sites (CDT, SVT, POL) where the urban density is 

higher (Table 6). 

The standard deviations relative to the average maximum accelerations shown in table 5 and 

6 are associated with the variability of stochastic component of the sub-source spectra and are of the 

order of 10% of  the PGA value. The variability of ground motion associated with the uncertainty in 

the model parameters has been estimated to be as large as 35% of the ground motion parameters as 

observed by Sorensen et al. (2007). This result is in agreement with the variability of the ground 

motion associated with the simulation for MD = 4.3 earthquake scenario, obtained for different 

values of stress drop (Table 5).  

 

7. Discussion and conclusions 

 

 The stochastic finite-fault simulations reproduce reasonably well the ground motion for 

selected earthquakes (1.7 ≤ MD ≤ 3.6). It is of note that the empirically defined strong-motion 

duration agrees with that estimated by theoretical considerations based on the assumption of a 

diffusive earth medium. This result allows this procedure to be exported to other volcanoes where 

there are not sufficient local earthquake recordings available to determine the empirical relationship 

between duration and distance. In synthesis, there is an important point to consider: it is necessary 

to precisely measure the average scattering properties of the seismic medium in order to bypass the 

lack of a sufficiently extended range of magnitudes and distances that are needed for a robust 

assessment of the correct empirical distance-duration relationships that characterize the volcanic 

area under study. 

The stochastic procedure, validated on the observed waveforms, was used to simulate the 

synthetic waveforms for a possible future earthquake of MD ≥ 4.3. The earthquake that is expected 

to produce the strongest level of shaking was selected by considering G&R relationship and 

historical study on the past eruptions for the selected area. The corresponding magnitude, which we 

have indicated as Mmax, was derived from the empirical relationship which relates the fault 

dimension to the magnitude of the “controlling” earthquake. On the basis of an acceptable 

assumption on size and source location, as explained in section 4, we selected the “controlling” 

earthquake MD = 4.3. This is the maximum in a “statistical sense”, as it is derived from the 

statistical distribution of the magnitude in the time interval between the early sixties and today. 

Implicit in this choice is the assumption that the tectonic regime associated with the volcanic 
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activity of Mt Vesuvius is stationary, and that the seismic catalogue used to estimate the Gutenberg-

Richter relationship reflects this stationarity. The maximum acceleration values deduced by the 

synthetic waveforms for this event are in the range between 0.140 and 0.038 g. The values of Amax , 

obtained in this way for the MD = 4.3,  are similar to those calculated from ground motion 

predictive relationships for the reference hazard map of Italy  (Montaldo et al., 2005). These authors 

evaluated maximum acceleration in hazard calculation for volcanic areas of Italian territory by RVT 

method for MW = 4.5 and Δσ = 50 bar scenario earthquake, values that are slightly different from 

those of the present paper. A direct comparison with our results is consequently impossible, but  the 

acceleration values evaluated for MD = 4.3 (table 5) are only slightly different for the investigated 

sites than the values calculated from regional attenuation for volcanic areas (Montaldo et al., 2005, 

fig.11). This small discrepancy (less than 30% of PGA values shown in table 5) can be due to the 

higher values of stress drop used here (60,70 and 80 bar), as well as to the different attenuation 

factor Q (Q = 250 in the work of Montaldo et al., 2005 and Q=150 in the present work) and  to the 

site effect correction factor for the sites of interest applied in our work. 

Higher values of Amax [Amax = 0.32 g (CDT) is the maximum acceleration value among the 

recording sites located in the urban area] were obtained by considering MD = 5.4. An earthquake of 

this magnitude struck the Vesuvius area 17 years before the big Pompei eruption. It can reasonably 

be considered as the maximum that has ever occurred in this area in historical times. It appears quite 

evident that we have no chance to decide whether or not the “statistical” estimate of Mmax is the 

most reasonable, because we have no idea of which tectonic regime might be associated with a 

renewal of volcanic activity of Mt Vesuvius. Therefore, we propose two alternatives: the first (Mmax 

= 4.3) is based on the assumption of a substantial stationarity of the seismic regime, taken by 

extrapolating the present rate of seismicity, as the G&R predicts. The second alternative (MD = 5.4) 

is in our opinion the worst possible scenario, which could happen in the case of a huge Plinian 

eruptions, as the Pompei eruption of 79 d.C. which occurred after a strong change in the local 

seismo-tectonic regime of the area. 
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Appendix 

 

 Recent efforts have been made to quantitatively describe strong-motion duration in terms of 

earthquake magnitude, source-to-station distance and effect of geological environment (Williamson, 

1972). The general observation is that a seismic wave packet broadens as a function of distance and 

of the heterogeneity of the seismic medium. The knowledge of the earth medium properties of the 

Mt Vesuvius area has been refined recently using transport theory and by interpreting the seismic 

coda energy envelope as generated by a diffusion process (Del Pezzo et al., 2006). In diffusive 

environments, the scattering properties can significantly affect the duration of the seismic ground 

motion (Petukhin and Gusev, 2003). In the present study, we have evaluated the time duration for 

the selected seismograms using the definition of Gusev (1983; Trms) as given by Petukhin and 

Gusev (2003) and calculated the theoretical duration as a function of the intrinsic dissipation and 

scattering coefficient (Fehler and Sato, 2003). The Trms duration is defined through the normalized 

second central moment of the squared signal A(t)2 by considering the following relationship 

(Gusev, 1983): 

 

( )20102
2 // eeee=TRMS −  (3) 

 

where ej are j-th power moments over time, defined as: 
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∞

⋅
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2 0,1,2  (4) 

 

The full seismogram envelope is well described by transport theory, which is also known as 

radiative transfer theory, and which has been well known for many years in many fields of physics, 

including acoustics and optics (Rayleigh, 1945; Varadan et al., 1978). The application of this theory 

to the energy envelopes of the seismograms recorded at Mt Vesuvius has revealed that the 

propagation of the high frequency wavefield takes place in a diffusive regime (Del Pezzo et al., 

2006). The same authors calculated the diffusivity and the intrinsic dissipation parameters that 

characterize the Mt Vesuvius zone.  

Assuming a diffusive regime, we can use the equation describing the lapse-time dependence 

of the seismic energy envelope as a function of energy at source and distance (Sato and Fehler, 

1997), and apply the definition of duration given by Gusev (1983) to this envelope. In this way, we 

obtain a theoretically based set of distance duration curves at given magnitudes, which depend on 

the diffusivity and intrinsic dissipation measured (independently) in the area under study. 

The diffusion equation can be written as: 
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where ED is the energy flux density, f is the frequency, QS is the scattering quality factor, v is the 

wave speed, QI is the intrinsic quality factor, r is the source station distance, E0 is the energy at 

source, t is the lapse time, H(t) is the Heaviside step function, and D is the diffusivity, which is 

given by: 

 

1

2

6 −
SQfπ

v=D  (6) 

 

The analytical form of the K(x) function is given by (Sato and Fehler, 1998): 

 

K(x)=(1/x)ln[(x+1)/(x-1)] (7) 

 

The energy flux density described by equation (5) represents the energy envelope for the 

seismogram filtered at central frequency f; in our application, the evaluation of the strong-motion 

duration TRMS was made on the energy flux density evaluated across the whole range of investigated 

frequencies, as: 

 

( ) ( )∑ −−−−

f
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1
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The results show a good agreement between the time durations evaluated from the observed 

waveform (Fig. 3, grey filled squares) and the theoretical diffusion model obtained for the BKE, 

BAF, SGV and FTC stations (Fig. 3, open circles). 
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Scenario Earthquake Fault Parameters 

Mmax MD = 4.3 MD = 5.4 

Dimension  2.0 x 2.0 km2 4.0 x 8.0 km2 

Hypocenter Latitude = 40° 49’ 52’’ N 

Longitude = 14° 25’ 52’’ E  

Depth = 4.0 km b.s.l 

Latitude = 40° 49’ 52’’ N 

Longitude = 14° 25’ 52’’ E  

Depth = 4.0 km b.s.l 

Dip Angle 60° 60° 

Strike Angle 135° 135° 

 

Table 1 
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Date (yy-mm-dd-hh-mm) Lat. (N) Long. (E) Depth (km) MD Strike (°) Dip (°) 

99-07-03-22-51 40° 49’ 26’’ 14° 25’ 12’’ 1.7 1.7 265° 55° 

99-08-05-21-17 40° 49’ 33’’ 14° 25’ 22’’ 1.7 1.9 245° 60° 

99-03-11-03-49 40° 49’ 25’’ 14° 25’ 39’’ 2.6 2.0 185° 30° 

99-09-30-08-22 40° 49’ 26’’ 14° 25’ 36’’ 2.0 2.1 100° 80° 

99-04-12-11-07 40° 49’ 24’’ 14° 25’ 39’’ 1.4 2.4 195° 40° 

99-10-11-05-05 40° 49’ 28’’ 14° 25’ 39’’ 1.5 2.6 165° 70° 

99-11-05-05-55 40° 49’ 26’’ 14° 25’ 31’’ 1.5 2.7 255° 75° 

99-11-10-20-14 40° 49’ 49’’ 14° 25’ 46’’ 1.7 2.8 170° 85° 

99-10-11-04-35 40° 49’ 29’’ 14° 25’ 34’’ 1.6 3.3 65° 5° 

99-10-09-07-41 40° 49’ 52’’ 14° 25’ 52’’ 4.0  3.6 170° 85° 

 

Table 2 
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Figure 1 
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Model Parameters Value Reference 

Fault dimension Table 1 Wells and Coppersmith, 1994 

Average shear wave velocity 2.0 km/s Scarpa et al., 2002 

Average attenuation parameter  Q =150 Del Pezzo et al., 2006 

Density  ρ=2.5 g/cm3 Zollo et al., 2002 

Site effect empirical functions See fig.6 Galluzzo et al., 2006 

fmax 20 Hz - 

Ground motion duration Trms = 6.1s Gusev, 1983 

 

Table 3 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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Date  

(yy-mm-dd-hh-mm) 

MD L x W (km2) Δσ (bar) D (s) |Obs. Amax|   

( 10-3 g ) 

|Simul. Amax| ;  σ  

 ( 10-3 g ) 

99-07-03-22-51 1.7 0.18 x 0.18 6 4.3 1.3 1.2 ; 0.1 

99-08-05-21-17 1.9 0.23 x 0.23 6 4.2 2.0 2.0 ; 0.3 

99-03-11-03-49 2.0 0.25 x 0.25 5 4.8 0.7 0.8 ; 0.1 

99-09-30-08-22 2.1 0.30 x 0.30 5 4.3 0.5 0.6 ; 0.1 

99-04-12-11-07 2.4 0.35 x 0.42 6 3.8 3.6 4.0 ; 0.6 

99-10-11-05-05 2.6 0.42 x 0.42 6 3.9 4.1 4.2 ; 0.6 

99-11-05-05-55 2.7 0.45 x 0.45 6 4.0 3.7 3.7 ; 0.5 

99-11-10-20-14 2.8 0.50 x 0.50 5 4.2 3.7 4.2 ; 0.8 

99-10-11-04-35 3.3 0.80 x 0.80 9 4.0 16.0 17.0 ; 3.0 

99-10-09-07-41 3.6 1.00 x 1.20 50 6.1 28.0 29.0 ; 5.0 

 

Table 4 
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Figure 9 
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Figure 10 
 
 



 33

 
 

Figure 11 
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Figure 12 
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Station-Site Amax (g) ;  σ Amax (g) 

(Δσ = 60 bar) 

Amax (g) ; σ Amax (g) 

(Δσ = 70 bar) 

Amax (g) ; σ Amax (g) 

(Δσ = 80 bar) 

BAF 0.070 ; 0.010 0.080 ;  0.010 0.090 ; 0.010 

BKE 0.100 ; 0.020 0.120 ; 0.020 0.140 ; 0.030 

BKN 0.080 ;  0.010 0.100 ; 0.010 0.110 ; 0.020 

SGV 0.090 ;  0.010 0.110 ; 0.010 0.130 ; 0.010 

FTC 0.040 ;  0.010 0.050 ; 0.010 0.060 ; 0.010 

BKS 0.080 ; 0.010 0.090 ; 0.020 0.110 ; 0.020 

POL 0.021 ;  0.002 0.025 ; 0.002 0.028 ; 0.002 

SVT 0.029 ;  0.003 0.033 ; 0.003 0.038 ; 0.004 

CDT 0.053 ;  0.006 0.061 ; 0.007 0.070 ; 0.008 

 
Table 5 
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Station-Site Amax (g) ; σ Amax (g) 

(Δσ = 70 bar) 

BAF 0.32 ; 0.04 

BKE 0.45 ; 0.06 

BKN 0.55 ; 0.07 

SGV 0.44 ; 0.05 

FTC 0.29 ; 0.04 

BKS 0.37 ; 0.06 

POL 0.17 ; 0.02 

SVT 0.20 ; 0.03 

CDT 0.32 ; 0.04 

 

Table 6 
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Figure captions 

 

Figure 1. Epicenters of selected local earthquakes (open black circles filled with grey cruises) in the 

Mt Vesuvius area (elevation contours are drown with grey lines) and distribution of station sites 

used in this study (open and filled black triangles). Filled triangles indicate the stations used for the 

calibration of the stochastic procedure. The reference of the map (0;0) corresponds to geographical 

coordinates Latitude = 40° 49’ 52’’ N and Longitude = 14° 25’ 52’’ E. The small insert in the low-

right side of the figure shows the location of the investigated area respect to the Italian territory.   

 

Figure 2. Site effect amplification functions for each of the study sites obtained for a 3-sec window 

at the S wave (from Galluzzo et al., 2006). 

 

Figure 3. TRMS evaluated from the horizontal components of 58 waveforms at the BAF, BKE, SGV 

and FTC stations. The grey filled squares represent the TRMS evaluated from the observed 

waveforms by taking the averaged TRMS between the horizontal components of motion. The circles 

show the TRMS calculated from the envelope of energy flux density for each of the selected 

earthquakes recorded at the selected sites/stations. 

 

Figure 4. Distance dependence of TRMS evaluated from the energy flux density envelope model for 

the local earthquakes in the Mt Vesuvius area. The straight black line shows the linear relationship 

between TRMS and distance obtained by least square fitting. 

 

Figure 5. Observed horizontal acceleration seismograms (top left panels, black-line waveforms) 

compared to simulated accelerogram (bottom left panel, grey line) for the MD = 3.6 seismic event of 

1999-10-09 recorded at station BKE. Right-hand panels: Corresponding response spectra (5% 

damping) evaluated from the observed (black lines) and synthetic (grey line, grey fill) waveforms in 

the frequency range of 1-40 Hz. 

 

Figure 6. Same as for Figure 5, for the MD = 2.7 seismic event of 1999-11-05 recorded at station 

SGV. 

 

Figure 7. Same as for Figure 5, for the MD = 2.6 seismic event of 1999-10-11 recorded at station 

BKE. 

 

Figure 8. Same as for Figure 5, for the MD = 3.3 seismic event of 1999-10-11 recorded at station 

SGV. 
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Figure 9. Synthetic waveforms and maximum acceleration values evaluated for each of the sites in 

the Mt Vesuvius area. The values of Amax are for an MD = 4.3 seismic event with a stress drop of 70 

bar. Maximum values are evaluated by averaging the maximum acceleration from 30 simulated 

time series. The projection of the fault on the surface is shown by the black rectangle in the center 

(crater area).  

 

Figure 10. Response acceleration spectra for 5% damping, evaluated for each of the sites for an MD 

= 4.3 seismic event (stress drop = 70 bar). 

 

Figure 11. Synthetic waveforms and maximum acceleration values evaluated for each of the sites in 

the Mt Vesuvius area for the MD = 5.4 (stress drop = 70 bar). 

 

Figure 12. Response acceleration spectra for 5% damping, evaluated for each of the sites for an MD 

= 5.4 seismic event (stress drop = 70 bar).
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Tables 

 

Table 1. Scenario earthquake source parameters. 

 

Table 2. Selected earthquake data set parameters (from Del Pezzo et al., 2004). Time and 

hypocenter coordinates, duration magnitudes and focal parameters of the selected earthquakes. 

 

Table 3. Parameters for the application of the stochastic simulation procedure in the studied area. 

 

Table 4. Fault dimension of selected earthquakes calculated with the Wells and Coppersmith 

relationship (1994). The “trial and error” calibration procedure between the observed waveforms 

and the simulated ones is used to set the stress-drop values (column III). The last two columns show 

the results for the maximum acceleration values evaluated from simulated and observed 

accelerograms.  

 

Table 5. Maximum acceleration values with standard deviations calculated for each of the sites in 

the study area. The values of PGA are based on 30 realizations of stochastic simulation. The 

acceleration values were evaluated for MD = 4.3 and for a stress drop of 60, 70 and 80 bar. 

 

Table 6. Maximum acceleration values with standard deviations calculated for each of the sites in 

the study area. The values of PGA are based on 30 realizations of stochastic simulation. The 

acceleration values were evaluated for MD = 5.4 and for a stress drop of 70 bar. 

 


